0000000001301972
AUTHOR
Souvik Maity
Family of Isomeric CuII–LnIII (Ln = Gd, Tb, and Dy) Complexes Presenting Field-Induced Slow Relaxation of Magnetization Only for the Members Containing GdIII
The strategic design and synthesis of two isomeric CuII complexes, [CuLA] and [CuLB], of asymmetrically dicondensed N2O3-donor Schiff-base ligands (where H2LA and H2LB are N-salicylidene-N'-3-methoxysalicylidenepropane-1,2-diamine and N-3-methoxysalicylidene-N'-salicylidenepropane-1,2-diamine, respectively) have been accomplished via a convenient CuII template method. These two complexes have been used as metalloligands for the synthesis of three pairs of Cu-Ln isomeric complexes [CuL(μ-NO3)Ln(NO3)2(H2O)]·CH3CN (for complexes 1A-3A, L = LA, and for complexes 1B-3B, L = LB and Ln = Gd, Tb, and Dy, respectively), all of which have been characterized structurally. In all six isomorphous and is…
Alignment for the first precision measurements at Belle II
On March 25th 2019, the Belle II detector recorded the first collisions delivered by the SuperKEKB accelerator. This marked the beginning of the physics run with vertex detector. The vertex detector was aligned initially with cosmic ray tracks without magnetic field simultaneously with the drift chamber. The alignment method is based on Millepede II and the General Broken Lines track model and includes also the muon system or primary vertex position alignment. To control weak modes, we employ sensitive validation tools and various track samples can be used as alignment input, from straight cosmic tracks to mass-constrained decays. With increasing luminosity and experience, the alignment is …
Hexanuclear NiII4LnIII2 Complexes with SMM Behavior at Zero Field for Ln = Tb, Dy, Ho
A mononuclear Ni(II) complex, [NiL2]·2H2O, was prepared by the reaction of a N2O2 donor monocondensed Schiff base ligand, 2-((3-aminopropylimino)methyl)-6-methoxyphenol (HL), with NiCl2·6H2O. The reaction of this complex with NiCl2·6H2O and LnCl3·6H2O (Ln = Gd, Tb, Dy, Ho) in a 1:1:1 molar ratio leads to four hexanuclear Ni4Ln2 complexes formulated as [{(NiL)2Gd}2(μ2-Cl)2(μ3-OH)4(OH2)4]Cl4·CH3CN·H2O (1), [{(NiL)2Tb}2(μ2-Cl)2Cl2(μ3-OH)4(OH2)2]Cl2·12H2O (2), [{(NiL)2Dy}2(μ2-Cl)2Cl2(μ3-OH)4(OH2)2]Cl2·16H2O (3), and [{(NiL)2Ho}2(μ2-Cl)2(μ3-OH)4(OH2)4]Cl4·CH3CN·1.8H2O (4). The Ln(III) centers are octacoordinated with a triangular-dodecahedral geometry, and the geometries around the Ni(II) center…
Data quality monitors of vertex detectors at the start of the Belle II experiment
The Belle II experiment features a substantial upgrade of the Belle detector and will operate at the SuperKEKB energy-asymmetric e+e− collider at KEK in Tsukuba, Japan. The accelerator completed its first phase of commissioning in 2016, and the Belle II detector saw its first electron-positron collisions in April 2018. Belle II features a newly designed silicon vertex detector based on double-sided strip layers and DEPFET pixel layers. A subset of the vertex detector was operated in 2018 to determine background conditions (Phase 2 operation). The collaboration completed full detector installation in January 2019, and the experiment started full data taking. This paper will report on the fin…
CCDC 2036265: Experimental Crystal Structure Determination
Related Article: Tanmoy Kumar Ghosh, Souvik Maity, Júlia Mayans, Ashutosh Ghosh|2021|Inorg.Chem.|60|438|doi:10.1021/acs.inorgchem.0c03129
CCDC 1982789: Experimental Crystal Structure Determination
Related Article: Souvik Maity, Tanmoy Kumar Ghosh, Carlos J. Gómez-García, Ashutosh Ghosh|2020|Cryst.Growth Des.|20|7300|doi:10.1021/acs.cgd.0c00957
CCDC 2036263: Experimental Crystal Structure Determination
Related Article: Tanmoy Kumar Ghosh, Souvik Maity, Júlia Mayans, Ashutosh Ghosh|2021|Inorg.Chem.|60|438|doi:10.1021/acs.inorgchem.0c03129
CCDC 2036266: Experimental Crystal Structure Determination
Related Article: Tanmoy Kumar Ghosh, Souvik Maity, Júlia Mayans, Ashutosh Ghosh|2021|Inorg.Chem.|60|438|doi:10.1021/acs.inorgchem.0c03129
CCDC 1982786: Experimental Crystal Structure Determination
Related Article: Souvik Maity, Tanmoy Kumar Ghosh, Carlos J. Gómez-García, Ashutosh Ghosh|2020|Cryst.Growth Des.|20|7300|doi:10.1021/acs.cgd.0c00957
CCDC 2036264: Experimental Crystal Structure Determination
Related Article: Tanmoy Kumar Ghosh, Souvik Maity, Júlia Mayans, Ashutosh Ghosh|2021|Inorg.Chem.|60|438|doi:10.1021/acs.inorgchem.0c03129
CCDC 1982788: Experimental Crystal Structure Determination
Related Article: Souvik Maity, Tanmoy Kumar Ghosh, Carlos J. Gómez-García, Ashutosh Ghosh|2020|Cryst.Growth Des.|20|7300|doi:10.1021/acs.cgd.0c00957
CCDC 1982787: Experimental Crystal Structure Determination
Related Article: Souvik Maity, Tanmoy Kumar Ghosh, Carlos J. Gómez-García, Ashutosh Ghosh|2020|Cryst.Growth Des.|20|7300|doi:10.1021/acs.cgd.0c00957
CCDC 2036268: Experimental Crystal Structure Determination
Related Article: Tanmoy Kumar Ghosh, Souvik Maity, Júlia Mayans, Ashutosh Ghosh|2021|Inorg.Chem.|60|438|doi:10.1021/acs.inorgchem.0c03129
CCDC 2036267: Experimental Crystal Structure Determination
Related Article: Tanmoy Kumar Ghosh, Souvik Maity, Júlia Mayans, Ashutosh Ghosh|2021|Inorg.Chem.|60|438|doi:10.1021/acs.inorgchem.0c03129