0000000001302035
AUTHOR
B.g. Carlsson
Solution of self-consistent equations for the N3LO nuclear energy density functional in spherical symmetry. The program hosphe (v1.02)
Abstract We present solution of self-consistent equations for the N 3 LO nuclear energy density functional. We derive general expressions for the mean fields expressed as differential operators depending on densities and for the densities expressed in terms of derivatives of wave functions. These expressions are then specified to the case of spherical symmetry. We also present the computer program hosphe (v1.02), which solves the self-consistent equations by using the expansion of single-particle wave functions on the spherical harmonic oscillator basis. Program summary Program title: HOSPHE (v1.02) Catalogue identifier: AEGK_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEGK_…
Spectroscopic Tools Applied to Element Z = 115 Decay Chains
Nuclides that are considered to be isotopes of element Z = 115 were produced in the reaction 48Ca + 243Am at the GSI Helmholtzzentrum für Schwerionenforschung Darmstadt. The detector setup TASISpec was used. It was mounted behind the gas-filled separator TASCA. Thirty correlated α-decay chains were found, and the energies of the particles were determined with high precision. Two important spectroscopic aspects of the offline data analysis are discussed in detail: the handling of digitized preamplified signals from the silicon strip detectors, and the energy reconstruction of particles escaping to upstream detectors relying on pixel-by-pixel dead-layer thicknesses.
Solution of self-consistent equations for the N3LO nuclear energy density functional in spherical symmetry. The program hosphe (v1.02)
Abstract We present solution of self-consistent equations for the N^3 LO nuclear energy density functional. We derive general expressions for the mean fields expressed as differential operators depending on densities and for the densities expressed in terms of derivatives of wave functions. These expressions are then specified to the case of spherical symmetry. We also present the computer program hosphe (v1.02), which solves the self-consistent equations by using the expansion of single-particle wave... Title of program: HOSPHE (v1.02) Catalogue Id: AEGK_v1_0 Nature of problem The nuclear mean-field methods constitute principal tools of a description of nuclear states in heavy nuclei. With…