0000000001302868

AUTHOR

K.w. Krygier

Precise measurements of the neutron magnetic form factor

Abstract The neutron magnetic form factor Gmn has been determined via a measurement of the ratio of cross sections D(e,e′n) and D(e,e′p). The absolute detection efficiency of the neutron detector was measured with high accuracy using tagged neutrons produced from H(n,p)n elastic scattering by means of a high intensity neutron beam. This approach minimizes the model dependence and improves upon the weakest points of previous experiments. Data in the range q2=0.2–0.8 (GeV/c)2 with uncertainties of

research product

Investigation of short-range nucleon-nucleon correlations using the reaction in close to 4π geometry

Abstract Two-proton correlations were studied in close to 4 π geometry using the reaction 12 C (e,e′pp) . The beam energy was 705 MeV, the energy transfer 225 MeV, and the three-momentum transfer 412 MeV/c. The electrons were observed in a large-acceptance magnetic spectrometer in coincidence with protons observed in a BGO crystal ball. Missing energy and momentum, relative momentum and angular distributions were derived and compared with a factorized two-nucleon emission model. Soft-core correlation functions are favoured by the data.

research product

The three-spectrometer facility at the Mainz microtron MAMI

Abstract A set-up of three high-resolution magnetic spectrometers, for simplicity named A, B and C, has been built as the central facility for the precise determination of double and triple coincidence cross sections of hadron knock-out and meson production through the scattering of electrons at the Mainz microtron MAMI. The spectrometers A and C with point-to-point optics in the dispersive plane and parallel-to-point optics in the non-dispersive plane have a solid angle of 28 msr and a momentum acceptance of 20 and 25%, respectively. They each consist of a quadrupole, a sextupole and two dipole magnets, reaching maximum momenta of 735 and 550 MeV/c, respectively. The spectrometer B has a s…

research product

Model-independent separation of structure functions over an extended kinematical region

A method for the separation of structure functions in (e, e′ p) experiments is proposed, which is an extension of the traditional Rosenbluth-type techniques of [1,2]. In our approach, we use a very flexible Ansatz to describe the structure functions within an extended kinematical regionG and determine its free parameters with a x2 minimization. The procedure is tested by pseudo data (12C(e, e′p)11Bg.s.) in the quasi-free region.

research product

Large recoil momenta in the D(e,e′p)n reaction

Abstract The D(e,e′p)n reaction cross section has been measured for recoil momenta ranging from 17 MeV/c up to 950 MeV/c at momentum transfers between 600 MeV/c and 700 MeV/c. At recoil momenta above 400 MeV/c, the gross features of the cross section are only reproduced if virtual nucleon excitations are included in the calculations.

research product

MECDAS/spl minus/a distributed data acquisition system for experiments at MAMI

For coincidence experiments with the three-spectrometer setup at MAMI an experiment control and data acquisition system has been built and was put successfully into final operation in 1992. MECDAS is designed as a distributed system using communication via Ethernet and optical links. At the front end, VMEbus systems are used for real time purposes and direct hardware access via CAMAC, Fastbus or VMEbus. RISC workstations running UNIX are used for monitoring, data archiving and online and offline analysis of the experiment. MECDAS consists of several fixed programs and libraries, but large parts of readout and analysis can be configured by the user. Experiment specific configuration files ar…

research product

"Table 6" of "Precise pion electroproduction in the p (e, e-prime pi+) n reaction at W = 1125-MeV"

Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).

research product

"Table 4" of "Precise pion electroproduction in the p (e, e-prime pi+) n reaction at W = 1125-MeV"

Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).

research product

"Table 2" of "Precise pion electroproduction in the p (e, e-prime pi+) n reaction at W = 1125-MeV"

Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).

research product

"Table 1" of "Virtual Compton scattering under pi0 threshold at Q**2 = 0.33-GeV**2: Preliminary results."

No description provided.

research product

"Table 2" of "Polarization transfer in the He-4(e(pol.),e' p(pol.)H-3 reaction."

No description provided.

research product

"Table 5" of "Precise pion electroproduction in the p (e, e-prime pi+) n reaction at W = 1125-MeV"

Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).

research product

"Table 3" of "Precise pion electroproduction in the p (e, e-prime pi+) n reaction at W = 1125-MeV"

Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).

research product

"Table 1" of "Polarization transfer in the He-4(e(pol.),e' p(pol.)H-3 reaction."

No description provided.

research product

"Table 1" of "Precise pion electroproduction in the p (e, e-prime pi+) n reaction at W = 1125-MeV"

Angle PHI(P=4) is the angle between the scattering plane (defined by 1 and 3 particles) and the reaction plane (defined by 4 and 5 particles).

research product