0000000001302892

AUTHOR

Jack Passmore

Synthesis, Characterization, and Properties of Weakly Coordinating Anions Based on tris-Perfluoro-tert-Butoxyborane

A convenient method for the preparation of strongly Lewis acidic tris-perfluoro-tert-butoxyborane B(ORF)3 (1), (ORF = OC(CF3)3) was developed, and its X-ray structure was determined. 1 was used as a precursor, guided by density functional theory (DFT) calculations and volume-based thermodynamics, for the synthesis of [NEt4][NCB(ORF)3] (3) and [NMe4][FB(ORF)3] (5) and the novel large and weakly coordinating anion salts [Li 15-Crown-5][B(ORF)4] (2) and [NEt4][CN{B(ORF)3}2] (4). The stability of [B(ORF)4]− was compared with that of some related known weakly coordinating anions by appropriate DFT calculations.

research product

77Se NMR Spectroscopic, DFT MO, and VBT Investigations of the Reversible Dissociation of Solid (Se6I2)[AsF6]2•2SO2 in Liquid SO2 to Solutions Containing 1,4-Se6I22+ in Equilibrium with Sen2+ (n = 4, 8, 10) and Seven Binary Selenium Iodine Cations: Preliminary Evidence for 1,1,4,4-Se4Br42+ and cyclo-Se7Br+

The composition of a complex equilibrium mixture formed upon dissolution of (Se6I2)[AsF6]2·2SO2 in SO2(l) was studied by 77Se NMR spectroscopy at −70 °C with both natural-abundance and enriched 77Se-isotope samples (enrichment 92%). Both the natural-abundance and enriched NMR spectra showed the presence of previously known cations 1,4-Se6I22+, SeI3+, 1,1,4,4-Se4I42+, Se102+, Se82+, and Se42+. The structure and bonding in 1,4-Se6I22+ and 1,1,4,4-Se4I42+ were explored using DFT calculations. It was shown that the observed Se−Se bond alternation and presence of thermodynamically stable 4pπ−4pπ Se−Se and 4pπ−5pπ Se−I bonds arise from positive charge delocalization from the formally positively c…

research product

Basis set and correlation effects in the calculation of accurate gas phase dimerization energies of two M+2 to give M2+4 (M = S, Se)

The dimerization energies of two M2+ to give M42+ (M = S, Se) were calcd. They depend strongly on the size of the basis set and the correlation method used (ranging from 217 to 522 kJ/mol, M = S) and, therefore, a systematic study of basis set and correlation effects was performed [MP2, MP3, MP4(SDQ), CCSD, CCSD(T)]. The introduction of a second set of polarizing d-functions caused a significant redn. of the dimerization energies, but neither of the above limits is reached by the MPn (n = 2, 3, 4) theory, even with the largest basis sets [cc-pVQZ]. However, convergence was achieved by CCSD(T), compd. methods or hybrid HF/DFT calcns. employing flexible basis sets [e.g., CCSD(T)/cc-pV5Z, CBS-…

research product

Synthesis, Characterization, and Properties of Weakly Coordinating Anions Based on tris-Perfluoro-tert-Butoxyborane

Abstract Image A convenient method for the preparation of strongly Lewis acidic tris-perfluoro-tert-butoxyborane B(ORF)3 (1), (ORF = OC(CF3)3) was developed, and its X-ray structure was determined. 1 was used as a precursor, guided by density functional theory (DFT) calculations and volume-based thermodynamics, for the synthesis of [NEt4][NCB(ORF)3] (3) and [NMe4][FB(ORF)3] (5) and the novel large and weakly coordinating anion salts [Li 15-Crown-5][B(ORF)4] (2) and [NEt4][CN{B(ORF)3}2] (4). The stability of [B(ORF)4]− was compared with that of some related known weakly coordinating anions by appropriate DFT calculations. peerReviewed

research product

CCDC 1510717: Experimental Crystal Structure Determination

Related Article: Francis A. LeBlanc, Andreas Decken, T. Stanley Cameron, Jack Passmore, J. Mikko Rautiainen, and Thomas K. Whidden|2017|Inorg.Chem.|56|974|doi:10.1021/acs.inorgchem.6b02670

research product

CCDC 1510754: Experimental Crystal Structure Determination

Related Article: Francis A. LeBlanc, Andreas Decken, T. Stanley Cameron, Jack Passmore, J. Mikko Rautiainen, and Thomas K. Whidden|2017|Inorg.Chem.|56|974|doi:10.1021/acs.inorgchem.6b02670

research product

CCDC 1448944: Experimental Crystal Structure Determination

Related Article: Francis A. LeBlanc, Andreas Decken, T. Stanley Cameron, Jack Passmore, J. Mikko Rautiainen, and Thomas K. Whidden|2017|Inorg.Chem.|56|974|doi:10.1021/acs.inorgchem.6b02670

research product