0000000001303566
AUTHOR
Myron A Peck
Oxygen consumption of F0 and F1 larval and juvenile European seabass Dicentrarchus labrax in resonse to ocean acidification and warming
Ongoing climate change is leading to warmer and more acidic oceans. The future distribution of fish within the oceans depends on their capacity to adapt to these new environments. Only few studies have examined the effects of ocean acidification (OA) and warming (OW) on the metabolism of long-lived fish over successive generations. We therefore aimed to investigate the effect of OA on larval and juvenile growth and metabolism on two successive generations of European sea bass (Dicentrarchus labrax L.) as well as the effect of OAW on larval and juvenile growth and metabolism of the second generation. European sea bass is a large economically important fish species with a long generation time…
Growth rates of F0 and F1 larval and juvenile European seabass Dicentrarchus labrax in resonse to ocean acidification and warming
Ongoing climate change is leading to warmer and more acidic oceans. The future distribution of fish within the oceans depends on their capacity to adapt to these new environments. Only few studies have examined the effects of ocean acidification (OA) and warming (OW) on the metabolism of long-lived fish over successive generations. We therefore aimed to investigate the effect of OA on larval and juvenile growth and metabolism on two successive generations of European sea bass (Dicentrarchus labrax L.) as well as the effect of OAW on larval and juvenile growth and metabolism of the second generation. European sea bass is a large economically important fish species with a long generation time…
Experimental conditions for respiration and growth studies of F0 and F1 larval and juvenile European seabass Dicentrarchus labrax
Water parameters in the 2 years before spawning of F0 (08.02.2016-06.03.2018) and during larval and juvenile phase of F1: Larval period until 17.05.2018 (48 dph, 900 dd) and 01.06.2018 (63 dph, ~900 dd) for warm and cold life condition respectively, for the juveniles until 28.09.2018 (180 dph, ~4000 dd) and 12.02.2019 (319 dph, ~5100 dd) for warm and cold conditioned fish respectively. Means ± s.e. over all replicate tanks per condition. Temperature (Temp.), pH (free scale), salinity, oxygen and total alkalinity (TA) were measured weekly in F1 and monthly in F0; sea water (SW) measurements were conducted in 2017 and 2018. Water parameters during larval and early juvenile phase of F0: Larval…
Respiration and growth rates of F0 and F1 larval and juvenile European seabass Dicentrarchus labrax in response to ocean acidification and warming
Ongoing climate change is leading to warmer and more acidic oceans. The future distribution of fish within the oceans depends on their capacity to adapt to these new environments. Only few studies have examined the effects of ocean acidification (OA) and warming (OW) on the metabolism of long-lived fish over successive generations. We therefore aimed to investigate the effect of OA on larval and juvenile growth and metabolism on two successive generations of European sea bass (Dicentrarchus labrax L.) as well as the effect of OAW on larval and juvenile growth and metabolism of the second generation. European sea bass is a large economically important fish species with a long generation time…