0000000001303716

AUTHOR

Marianne Engeser

showing 18 related works from this author

Frontispiece: An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior

2017

CrystallographyChemistryStereochemistrySpin crossoverGeneral ChemistrySelf-assemblyCageCatalysisAngewandte Chemie International Edition
researchProduct

Self-assembly of metallosupramolecular rhombi from chiral concave 9,9'-spirobifluorene-derived bis(pyridine) ligands.

2014

Two new 9,9’-spirobifluorene-based bis(4-pyridines) were synthesised in enantiopure and one also in racemic form. These ligands act as concave templates and form metallosupramolecular [(dppp)2M2L2] rhombi with cis-protected [(dppp)Pd]2+ and [(dppp)Pt]2+ ions. The self-assembly process of the racemic ligand preferably occurs in a narcissistic self-recognising manner. Hence, a mixture of all three possible stereoisomers [(dppp)2M2{(R)-L}2](OTf)4, [(dppp)2M2{(S)-L}2](OTf)4, and [(dppp)2M2{(R)-L}{(S)-L}](OTf)4 was obtained in an approximate 1.5:1.5:1 ratio which corresponds to an amplification of the homochiral assemblies by a factor of approximately three as evidenced by NMR spectroscopy and m…

Stereochemistryconcave templatesSupramolecular chemistrymetal complexesFull Research Paperself-sortingsupramolecular chemistrylcsh:QD241-441lcsh:Organic chemistrysupramolekulaarinen kemialcsh:Scienceta1169LigandChemistryOrganic ChemistryNuclear magnetic resonance spectroscopyself-assemblyPyridine ligandCrystallographyChemistrySelf sortingEnantiopure drug99’-spirobifluorenelcsh:QSelf-assembly9’-spirobifluoreneSingle crystalBeilstein journal of organic chemistry
researchProduct

Ein achtkerniger metallosupramolekularer Würfel mit Spin-Crossover-Eigenschaften

2017

Materials science010405 organic chemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Enantiomerenreine [M6L12]- oder [M12L24]-Polyeder aus flexiblen Bis(pyridin)-Liganden

2014

Materials scienceGeneral MedicineAngewandte Chemie
researchProduct

Enantiomerically pure [M(6)L(12)] or [M(12)L(24)] polyhedra from flexible bis(pyridine) ligands.

2013

Coordination-driven self-assembly is one of the most powerful strategies to prepare nanometer-sized discrete (supra)molecular assemblies. Herein, we report on the use of two constitutionally isomeric BINOL-based bis(pyridine) ligands for this purpose. Upon coordination to Pd(II) ions these self-assemble into enantiomerically pure endo- and exo-functionalized hexa- and dodecanuclear metallosupramolecular spheres with a chiral skeleton depending on the substitution pattern of the BINOL core. These aggregates were characterized by NMR, MS, DLS, TEM, and EELS as well as ECD. Furthermore, experimental ECD data could be compared to those obtained from theoretical simulations using a simplified Ta…

Circular dichroismStereochemistryRotational freedomGeneral ChemistryHEXACatalysisPyridine ligandIonCrystallographychemistry.chemical_compoundPolyhedronchemistryPyridineSelf-assemblyta116Angewandte Chemie (International ed. in English)
researchProduct

Enantiomerically pure trinuclear helicates via diastereoselective self-assembly and characterization of their redox chemistry.

2014

A tris(bipyridine) ligand 1 with two BINOL (BINOL = 2, 2′-dihydroxy-1, 1′-binaphthyl) groups has been prepared in two enantiomerically pure forms. This ligand undergoes completely diastereoselective self-assembly into D2-symmeteric double-stranded trinuclear helicates upon coordination to copper(I) and silver(I) ions and to D3-symmetric triple-stranded trinuclear helicates upon coordination to copper(II), zinc(II), and iron(II) ions as demonstrated by mass spectrometry, NMR and CD spectroscopy in combination with quantum chemical calculations and X-ray diffraction analysis. According to the calculations, the single diastereomers that are formed during the self-assembly process are strongly …

Circular dichroismStereochemistryLigandDiastereomerchemistry.chemical_elementGeneral ChemistryZincBiochemistryCopperRedoxCatalysisCrystallographyBipyridinechemistry.chemical_compoundColloid and Surface Chemistrychemistrytrinuclear helicates; diastereoselective self-assembly; X-ray diffraction; redox chemistrySelf-assemblyta116Journal of the American Chemical Society
researchProduct

Unexpected self-assembly of a homochiral metallosupramolecular M4L4 catenane

2014

Two enantiomerically pure 9,9'-spirobifluorene-based bis(pyridine) ligands 1 and 2 were prepared to study their self-assembly behavior upon coordination to cis-protected palladium(II) ions. Whereas the sterically more demanding ligand, 2, gave rise to the expected dinuclear metallosupramolecular M2L2 rhombi, the sterically less demanding ligand, 1, acts as a template to give rise to a homochiral metallosupramolecular M4L4 catenane.

Steric effectsLigandStereochemistryOrganic ChemistryCatenanechemistry.chemical_elementGeneral ChemistryCatalysischemistry.chemical_compoundchemistryPyridinePolymer chemistrySelf-assemblyta116PalladiumChemistry: A European Journal
researchProduct

Chiral self-sorting behaviour of [2.2]paracyclophane-based bis(pyridine) ligands

2019

Two constitutionally isomeric chiral bis(pyridine) ligands based on planar chiral 4,15-difunctionalized [2.2]paracyclophanes were synthesized, the respective enantiomers were separated via HPLC on a chiral stationary phase, and their self-assembly behaviour upon coordination to palladium(ii) ions was studied with regard to chiral self-sorting effects. As proven by NMR spectroscopy, mass spectrometry, CD spectroscopy, UV-Vis spectroscopy and X-ray crystallography both ligands form the expected dinuclear complexes upon coordination to cis-protected di- or tetravalent palladium(ii) ions, respectively, however, with distinct differences concerning their chiral self-sorting ability. peerReviewed

Circular dichroismPalladium compoundsmassaspektrometriaPyridinechemistry.chemical_element010402 general chemistryMass spectrometryLigands01 natural sciencesIonchemistry.chemical_compoundPyridineNMR-spektroskopiaSpectroscopyta116Nuclear magnetic resonance spectroscopyUltraviolet visible spectroscopyMass spectrometry010405 organic chemistryligandsCircular dichroism spectroscopyNuclear magnetic resonance spectroscopyX ray crystallographyliganditkidetiede0104 chemical sciencesorganic chemistryCrystallographychemistrySynthesis (chemical)orgaaninen kemiaEnantiomerPalladiumOrganic Chemistry Frontiers
researchProduct

Subcomponent self‐assembly of a cyclic tetranuclear Fe(II) helicate in a highly diastereoselective self‐sorting manner

2019

Abstract An enantiomerically pure diamine based on the 4,15‐difunctionalized [2.2]paracyclophane scaffold and 2‐formylpyridine self‐assemble into an optically pure cyclic metallosupramolecular Fe4L6 helicate upon mixing with iron(II) ions in a diastereoselective subcomponent self‐assembly process. The cyclic assembly results from steric strain that prevents the formation of a smaller linear dinuclear triple‐stranded helicate, and hence, leads to the larger strain‐free assembly that fulfils the maximum occupancy rule. Interestingly, use of the racemic diamine also leads to a racemic mixture of the homochiral cyclic helicates as the major product in a highly diastereoselective narcissistic ch…

Circular dichroismSupramolecular chemistry010402 general chemistrychiral self-sorting01 natural sciencesCatalysisSupramolecular ChemistryStereocenterchemistry.chemical_compoundDiaminesupramolekulaarinen kemiacyclic helicates010405 organic chemistryCommunicationOrganic Chemistrymetallo-supramolecular chemistryDiastereomersubcomponent self-assemblyGeneral Chemistryself-assemblyparacyclophanesCommunications3. Good health0104 chemical sciencesCrystallographySelf sortingchemistryRacemic mixtureSelf-assembly[2.2]paracyclophane
researchProduct

An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior.

2018

By employing the subcomponent self-assembly approach utilizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin or its zinc(II) complex, 1H-4-imidazolecarbaldehyde, and either zinc(II) or iron(II) salts, we were able to prepare O-symmetric cages having a confined volume of ca. 1300 Å3 . The use of iron(II) salts yielded coordination cages in the high-spin state at room temperature, manifesting spin-crossover in solution at low temperatures, whereas corresponding zinc(II) salts led to the corresponding diamagnetic analogues. The new cages were characterized by synchrotron X-ray crystallography, high-resolution mass spectrometry, and NMR, Mössbauer, IR, and UV/Vis spectroscopy. The cage structures…

Stereochemistrychemistry.chemical_elementZinc010402 general chemistryMass spectrometry01 natural sciencesCatalysislaw.inventionhost-guest systemschemistry.chemical_compoundspin crossoverlawSpin crossoverMössbauer spectroscopySpectroscopyta116010405 organic chemistryChemistryiron(II) complexesGeneral Chemistryself-assemblymetallosupramolecular chemistryPorphyrinSynchrotron0104 chemical sciencesCrystallographyDiamagnetism
researchProduct

CCDC 1919439: Experimental Crystal Structure Determination

2019

Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(SP)-44'-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diyl]dianiline methanol solvateExperimental 3D Coordinates
researchProduct

CCDC 1451726: Experimental Crystal Structure Determination

2017

Related Article: Niklas Struch, Christoph Bannwarth, Tanya K. Ronson, Yvonne Lorenz, Bernd Mienert, Norbert Wagner, Marianne Engeser, Eckhard Bill, Rakesh Puttreddy, Kari Rissanen, Johannes Beck, Stefan Grimme, Jonathan R. Nitschke, Arne Lützen|2017|Angew.Chem.,Int.Ed.|56|4930|doi:10.1002/anie.201700832

Space GroupCrystallographyCrystal SystemCrystal Structurehexakis(mu-5101520-tetrakis(4-(imidazol-4-ylmethyleneamino)phenyl)porphyrinato)-acetonitrile-diaqua-octa-iron-hexa-zinc unknown anion acetonitrile unknown solvate trihydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1919442: Experimental Crystal Structure Determination

2019

Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164

(rac)-hexakis(mu-NN'-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diylbis(41-phenylene)]bis[1-(pyridin-2-yl)methanimine])-tetra-iron(ii) octakis(trifluoromethanesulfonate) unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1003004: Experimental Crystal Structure Determination

2014

Related Article: Christoph Gütz , Rainer Hovorka , Niklas Struch , Jens Bunzen , Georg Meyer-Eppler , Zheng-Wang Qu , Stefan Grimme , Filip Topić, Kari Rissanen, Mario Cetina, Marianne Engeser, Arne Lützen|2014|J.Am.Chem.Soc.|136|11830|doi:10.1021/ja506327c

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(mu-55'-bis((3'-(22'-bipyridin-5-ylethynyl)-22'-bis(methoxymethoxy)-11'-binaphthalen-3-yl)ethynyl)-22'-bipyridine)-tri-copper hexakis(tetrafluoroborate) acetonitrile tetrahydropyran solvateExperimental 3D Coordinates
researchProduct

CCDC 1919441: Experimental Crystal Structure Determination

2019

Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164

Space GroupCrystallographyΛΛΛ)-hexakis(mu-(SP)-NN'-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diylbis(41-phenylene)]bis[1-(pyridin-2-yl)methanimine])-tetra-iron(ii) octakis(trifluoromethanesulfonate) acetonitrile unknown solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 999739: Experimental Crystal Structure Determination

2014

Related Article: Rainer Hovorka, Georg Meyer-Eppler, Torsten Piehler, Sophie Hytteballe, Marianne Engeser, Filip Topić, Kari Rissanen, Arne Lützen|2014|Chem.-Eur.J.|20|13253|doi:10.1002/chem.201403414

Space GroupCrystallographybis(mu~2~-(R)-22'-(4-Pyridylethynyl)-99'-spirobi[fluorene])-bis(13-bis(diphenylphosphino)propane)-di-palladium(ii) tetrakis(trifluoromethanesulfonate) ethyl acetate unknown solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1919440: Experimental Crystal Structure Determination

2019

Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164

ΔΔΔ)-hexakis(mu-(RP)-NN'-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diylbis(41-phenylene)]bis[1-(pyridin-2-yl)methanimine])-tetra-iron(ii) octakis(trifluoromethanesulfonate) acetonitrile unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 971933: Experimental Crystal Structure Determination

2015

Related Article: Rainer Hovorka, Sophie Hytteballe, Torsten Piehler, Georg Meyer-Eppler, Filip Topić, Kari Rissanen, Marianne Engeser, Arne Lützen|2014|Beilstein J.Org.Chem.|10|432|doi:10.3762/bjoc.10.40

Space GroupCrystallographyCrystal SystemCrystal Structurebis(mu-44'-(99'-spirobi[fluorene]-22'-diyl)bispyridine)-bis(13-bis(diphenylphosphino)propane)-di-palladium(ii) tetrakis(trifluoromethanesulfonate) ethyl acetate unknown solvateCell ParametersExperimental 3D Coordinates
researchProduct