6533b85cfe1ef96bd12bc920
RESEARCH PRODUCT
Subcomponent self‐assembly of a cyclic tetranuclear Fe(II) helicate in a highly diastereoselective self‐sorting manner
Jana AnhäuserAndreas SchneiderRakesh PuttreddyMarianne EngeserKari RissanenArne LützenLukas Glanzsubject
Circular dichroismSupramolecular chemistry010402 general chemistrychiral self-sorting01 natural sciencesCatalysisSupramolecular ChemistryStereocenterchemistry.chemical_compoundDiaminesupramolekulaarinen kemiacyclic helicates010405 organic chemistryCommunicationOrganic Chemistrymetallo-supramolecular chemistryDiastereomersubcomponent self-assemblyGeneral Chemistryself-assemblyparacyclophanesCommunications3. Good health0104 chemical sciencesCrystallographySelf sortingchemistryRacemic mixtureSelf-assembly[2.2]paracyclophanedescription
Abstract An enantiomerically pure diamine based on the 4,15‐difunctionalized [2.2]paracyclophane scaffold and 2‐formylpyridine self‐assemble into an optically pure cyclic metallosupramolecular Fe4L6 helicate upon mixing with iron(II) ions in a diastereoselective subcomponent self‐assembly process. The cyclic assembly results from steric strain that prevents the formation of a smaller linear dinuclear triple‐stranded helicate, and hence, leads to the larger strain‐free assembly that fulfils the maximum occupancy rule. Interestingly, use of the racemic diamine also leads to a racemic mixture of the homochiral cyclic helicates as the major product in a highly diastereoselective narcissistic chiral self‐sorting manner given the fact that the assembly contains ten stereogenic elements, which can in principle give rise to 149 different diastereomers. The metallosupramolecular aggregates could be characterized by NMR, UV/Vis and CD spectroscopy, mass spectrometry, and X‐ray crystallography.
year | journal | country | edition | language |
---|---|---|---|---|
2019-08-28 |