0000000000011899
AUTHOR
Rakesh Puttreddy
Host–Guest Interactions of Sodiumsulfonatomethyleneresorcinarene and Quaternary Ammonium Halides: An Experimental–Computational Analysis of the Guest Inclusion Properties
The molecular recognition of nine quaternary alkyl- and aryl-ammonium halides (Bn) by two different receptors, Calkyl-tetrasodiumsulfonatomethyleneresorcinarene (An), were studied in solution using...
Solution and solid-state studies on the halide binding affinity of perfluorophenyl-armed uranyl–salophen receptors enhanced by anion–π Interactions
The enhancement of the binding between halide anions and a Lewis acidic uranyl-salophen receptor has been achieved by the introduction of pendant electron- deficient arene units into the receptor skeleton. The association and the occurrence of the elusive anion-p interaction with halide anions (as tetrabutylammonium salts) have been demonstrated in solution and in the solid state, providing unambiguous evidence on the interplay of the concerted interactions responsible for the anion binding.
Strong Emission Enhancement in pH-Responsive 2:2 Cucurbit[8]uril Complexes
Organic fluorophores, particularly stimuli-responsive molecules, are very interesting for biological and material sciences applications, but frequently limited by aggregation- and rotation-caused photoluminescence quenching. A series of easily accessible bipyridinium fluorophores, whose emission is quenched by a twisted intramolecular charge-transfer (TICT) mechanism, is reported. Encapsulation in a cucurbit[7]uril host gave a 1:1 complex exhibiting a moderate emission increase due to destabilization of the TICT state inside the apolar cucurbituril cavity. A much stronger fluorescence enhancement is observed in 2:2 complexes with the larger cucurbit[8]uril, which is caused by additional con…
Effiziente Umwandlung von Licht in chemische Energie: Gerichtete, chirale Photoschalter mit sehr hohen Quantenausbeuten
Substituent Effects on the [N-I-N](+) Halogen Bond
We have investigated the influence of electron density on the three-center [N-I-N](+) halogen bond. A series of [bis(pyri din e) io dine](+) and [1,2-bis ( (pyridin e-2-71 ethynyl)b e nze n e)io dine](+) BF4- complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by N-15 NMR and by computation of the natural atomic population and the pi electron population of the nitrogen atoms. Formation of the [N-…
Synthesis of tetrahalide dianions directed by crystal engineering
CrystEngComm 17(35), 6641-6645(2015). doi:10.1039/C5CE01288K
Coordination-Induced Spin-State Switching with Nickel Chlorin and Nickel Isobacteriochlorin
We present the first coordination-induced spin-state switching with nickel chlorin and nickel isobacteriochlorin. The spin-state switching was monitored by UV-vis spectroscopy and NMR titration experiments. The association constants (K1 and K2) and thermodynamic parameters (ΔH and ΔS) of the coordination of pyridine were determined. The first X-ray analyses of a paramagnetic nickel chlorin and a nickel isobacteriochlorin provide further information about the structure of the octahedral complexes. Nickel chlorin and even more pronounced nickel isobacteriochlorin exhibit stronger coordination of axial ligands compared to the corresponding nickel porphyrin and thus provide the basis for more e…
Frontispiece: An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior
Polyoxygenated Cyclohexenes and Other Constituents of Cleistochlamys kirkii Leaves.
Thirteen new metabolites, including the polyoxygenated cyclohexene derivatives cleistodiendiol (1), cleistodienol B (3), cleistenechlorohydrins A (4) and B (5), cleistenediols A-F (6-11), cleistenonal (12), and the butenolide cleistanolate (13), 2,5-dihydroxybenzyl benzoate (cleistophenolide, 14), and eight known compounds (2, 15-21) were isolated from a MeOH extract of the leaves of Cleistochlamys kirkii. The purified metabolites were identified by NMR spectroscopic and mass spectrometric analyses, whereas the absolute configurations of compounds 1, 17, and 19 were established by single-crystal X-ray diffraction. The configuration of the exocyclic double bond of compound 2 was revised base…
Photocontrolled On-Surface Pseudorotaxane Formation with Well-Ordered Macrocycle Multilayers.
The photoinduced pseudorotaxane formation between a photoresponsive axle and a tetralactam macrocycle was investigated in solution and on glass surfaces with immobilized multilayers of macrocycles. In the course of this reaction, a novel photoswitchable binding station with azobenzene as the photoswitchable unit and diketopiperazine as the binding station was synthesized and studied by NMR and UV/Vis spectroscopy. Glass surfaces have been functionalized with pyridine-terminated SAMs and subsequently with multilayers of macrocycles through layer-by-layer self assembly. A preferred orientation of the macrocycles could be confirmed by NEXAFS spectroscopy. The photocontrolled deposition of the …
Synthesis and structural characterization of new transition metal complexes of a highly luminescent amino-terpyridine ligand
The synthesis, NMR and UV-Vis spectroscopy measurements and X-ray diffraction analysis of four new metal complexes of the amino terpyridine ligand 4́-[4-(4-aminophenyl)phenyl]-2,2́:6́,2́́-terpyridine L, namely [FeL2](ClO4)2 (1), [ZnL2](ClO4)2 (2), [CdL2](ClO4)2 (3) and [PtMe3IL] (4), are reported. The X-ray crystal structures of complexes 1-3 are 1:2 metal:ligand structures with tridentate ligands decorated around the octahedral metal centers. In complex 4, with L in a bidentate coordination mode, the Pt(IV) coordinated methyl and iodine groups form a fac-arrangement. The 1H NMR spectrum of 4 shows three 195Pt-1H resonances for the methyl groups incorporating the fac-arrangement, which conf…
Polypyridyl-functionalizated alkynyl gold(i) metallaligands supported by tri- and tetradentate phosphanes
A series of alkynyl gold(I) tri and tetratopic metallaligands of the type [Au3(CuC-R)3(μ3-triphosphane)] (R = 2,2'-bipyridin-5-yl or C10H7N2, 2,2':6',2''-terpyridin-4-yl or C15H10N3; triphosphane = 1,1,1-tris(diphenylphosphanyl) ethane or triphos, 1,3,5-tris(diphenylphosphanyl)benzene or triphosph) and [Au4(CuC-R)4 (μ4-tetraphosphane)] (R = C10H7N2, C15H10N3; tetraphosphane = tetrakis(diphenylphosphanylmethyl)methane or tetraphos, 1,2,3,5-tetrakis(diphenylphosphanyl)benzene or tpbz, tetrakis(diphenylphosphaneylmethyl)-1,2- ethylenediamine or dppeda) were obtained in moderate to good yields. All complexes could be prepared by a Q4 reaction between the alkynyl gold(I) polymeric species [Au(Cu…
Halogen bonds in 2,5-dihalopyridine-copper(II) chloride complexes
Ten coordination complexes obtained through a facile reaction between 2,5-dihalopyridines and copperIJII) chloride (CuCl2) are characterized using single crystal X-ray diffraction. Two series of dihalopyridine complexes based on 2-chloro-5-X-pyridine and 2-bromo-5-X-pyridine (X = F, Cl, Br and I) were prepared to analyze the C–X2/X5⋯Cl–Cu halogen bonds (XB). The influence of X2- and X5-substituents on the respective interactions was examined by comparing them to the X2/X3⋯Cl–Cu XBs found in mono-substituted halopyridine complexes, (n-X-pyridine)2·CuCl2 (n = 2, 3 and X = Cl, Br and I). Varying the X5-halogens in (2,5-dihalopyridine)2·CuCl2, the C5–X5⋯Cl–Cu XBs follow the order F5 1 and they c…
Asymmetric synthesis of cyclopentanes bearing four contiguous stereocenters via an NHC-catalyzed Michael/Michael/esterification domino reaction.
An NHC-catalyzed Michael/Michael/esterification domino reaction via homoenolate/enolate intermediates for the asymmetric synthesis of tetrasubstituted cyclopentanes is described.
The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes
A series of 4-ethynylaniline gold(I) complexes containing monophosphane (1,3,5-triaza-7-phosphaadamantane (pta; 2), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (3), and PR3 , with R=naphthyl (4), phenyl (5), and ethyl (6)) and diphosphane (bis(diphenylphosphino)acetylene (dppa; 7), trans-1,2-bis(diphenylphosphino)ethene (dppet; 8), 1,2-bis(diphenylphosphino)ethane (dppe; 9), and 1,3-bis(diphenylphosphino)propane (dppp; 10)) ligands have been synthesized and their efficiency against tumor cells evaluated. The cytotoxicity of complexes 2-10 was evaluated in human colorectal (HCT116) and ovarian (A2780) carcinoma as well as in normal human fibroblasts. All the complexes showed a hi…
Mechanochemical Synthesis, Photophysical Properties, and X-ray Structures of N-Heteroacenes
The described mechanochemical methodology is an example of a proof-of-concept in which solution-based tedious, poor yielding, and difficult syntheses of pyrazaacenes are achieved under solvent-free ball-milling conditions; the method is easy, high yielding, time-efficient, and environmentally benign. The synthesized compounds also include pyrazaacenes (N-heteroacenes) that are octacene analogues containing pyrene building blocks. The compounds were sparingly soluble in common solvents, and column chromatographic purifications could be avoided after the solvent-free syntheses. The UV/Vis absorption spectra of the pyrazaacenes show intense absorption bands in the near-IR region. The single-cr…
Ein achtkerniger metallosupramolekularer Würfel mit Spin-Crossover-Eigenschaften
ChemInform Abstract: Asymmetric Synthesis of Cyclopentanes Bearing Four Contiguous Stereocenters via an NHC-Catalyzed Michael/Michael/Esterification Domino Reaction.
An NHC-catalyzed Michael/Michael/esterification domino reaction via homoenolate/enolate intermediates for the asymmetric synthesis of tetrasubstituted cyclopentanes bearing four contiguous stereocenters is described. A variety of α,β-unsaturated aldehydes and 2-nitroallylic acetates react well with good domino yields and high stereoselectivities.
N-(2,3,5,6-Tetrafluoropyridyl)sulfoximines: synthesis, X-ray crystallography, and halogen bonding
In the presence of KOH, NH-sulfoximines react with pentafluoropyridine to give N-(tetrafluoropyridyl)sulfoximines (NTFP-sulfoximines) in moderate to excellent yields. Either a solution-based or a superior solvent-free mechanochemical protocol can be followed. X-Ray diffraction analyses of 26 products provided insight into the bond parameters and conformational rigidity of the molecular scaffold. In solid-state structures, sulfoximines with halo substituents on the S-bound arene are intermolecularly linked by C–X⋯OS (X = Cl, Br) halogen bonds. Hirshfeld surface analysis is used to assess the type of non-covalent contacts present in molecules. For mixtures of three different S-pyridyl-substit…
Inclusion complexes of Cethyl-2-methylresorcinarene and pyridine N-oxides: breaking the C–I⋯−O–N+ halogen bond by host–guest complexation
C ethyl-2-Methylresorcinarene forms host–guest complexes with aromatic N-oxides through multiple intra- and intermolecular hydrogen bonds and C–H⋯π interactions. The host shows conformational flexibility to accommodate 3-methylpyridine N-oxide, while retaining a crown conformation for 2-methyl- and 4-methoxypyridine N-oxides highlighting the substituent effect of the guest. N-Methylmorpholine N-oxide, a 6-membered ring aliphatic N-oxide with a methyl at the N-oxide nitrogen, is bound by the equatorial −N–CH3 group located deep in the cavity. 2-Iodopyridine N-oxide is the only guest that manifests intermolecular N–O⋯I–C halogen bond interactions, which are broken down by the host resulting i…
Host–guest complexes of conformationally flexible C-hexyl-2-bromoresorcinarene and aromatic N-oxides: solid-state, solution and computational studies
Host–guest complexes of C-hexyl-2-bromoresorcinarene (BrC6) with twelve potential aromatic N-oxide guests were studied using single crystal X-ray diffraction analysis and 1H NMR spectroscopy. In the solid state, of the nine obtained X-ray crystal structures, eight were consistent with the formation of BrC6-N-oxide endo complexes. The lone exception was from the association between 4-phenylpyridine N-oxide and BrC6, in that case the host forms a self-inclusion complex. BrC6, as opposed to more rigid previously studied C-ethyl-2-bromoresorcinarene and C-propyl-2-bromoresorcinarene, undergoes remarkable cavity conformational changes to host different N-oxide guests through C–H···π(host) intera…
The C–I···–O–N+ Halogen Bonds with Tetraiodoethylene and Aromatic N-Oxides
The nature of C–I⋯⁻O–N⁺ interactions, first of its kind, between non-fluorinated tetraiodoethylene XB-donor and pyridine N-oxides (PyNO) are studied by single-crystal X-ray diffraction (SCXRD) and ...
A New Benzopyranyl Cadenane Sesquiterpene and Other Antiplasmodial and Cytotoxic Metabolites from Cleistochlamys kirkii
Phytochemical investigations of ethanol root bark and stem bark extracts of Cleistochlamys kirkii (Benth.) Oliv. (Annonaceae) yielded a new benzopyranyl cadinane-type sesquiterpene (cleistonol, 1) alongside 12 known compounds (2&ndash
Enantiomer Separation of Tris(2,2′-bipyridine)ruthenium(II): Interaction of a D3-Symmetric Cation with a C2-Symmetric Anion
A compound widely used in the separation of the enantiomers of Δ,Λ-[Ru(bipy)3]2+ (bipy = 2,2′-bipyridine) and originally described as “a curious lattice compound” with the formula Δ-[Ru(bipy)3]3[Sb2(R,R-tart)2]2I2·18H2O (tart = tetradeprotonated, carboxyl and hydroxyl, tartaric acid anion) has been crystallographically characterized as this species with a slightly higher degree of hydration (19.5H2O). The crystal lattice has a layered structure in which sheets containing Δ-[Ru(bipy)3]2+ cations and iodide anions alternate with those containing [Sb2(R,R-tart)2]2– anions and water. The role of the iodide ions, which lie in pseudohexagonal cavities formed by the array of three inequivalent but…
N-Heterocyclic Carbene Catalyzed Quadruple Domino Reactions through α,β-Unsaturated Acyl Azolium Intermediates : Asymmetric Synthesis of Cyclopenta[c]chromenones
An N‐heterocyclic carbene catalyzed domino sequence via α,β‐unsaturated acyl azolium intermediates has been developed. This strategy provides a convenient enantioselective route to functionalized tricyclic coumarin derivatives and cyclopentanes. DFT studies and control experiments were performed to gain better insight into the reaction mechanism. peerReviewed
Synthesis and structural characterization of new transition metal complexes of a highly luminescent amino-terpyridine ligand
Abstract The synthesis, NMR and UV–Vis spectroscopy measurements and X-ray diffraction analysis of four new metal complexes of the amino terpyridine ligand 4′-[4-(4-aminophenyl)phenyl]-2,2′:6′,2″-terpyridine L, namely [FeL2](ClO4)2 (1), [ZnL2](ClO4)2 (2), [CdL2](ClO4)2 (3) and [PtMe3IL] (4), are reported. The X-ray crystal structures of complexes 1–3 are 1:2 metal:ligand structures with tridentate ligands decorated around the octahedral metal centers. In complex 4, with L in a bidentate coordination mode, the Pt(IV) coordinated methyl and iodine groups form a fac-arrangement. The 1H NMR spectrum of 4 shows three 195Pt-1H resonances for the methyl groups incorporating the fac-arrangement, wh…
Tridentate C–I⋯O−–N+ halogen bonds
The X-ray structures of the first co-crystals where the three oxygen lone pairs in N-oxides are fully utilized for tridentate C–I⋯O−–N+ halogen bonding with 1,ω-diiodoperfluoroalkanes are reported, studied computationally, and compared with the corresponding silver(I) N-oxide complexes.
Two-photon absorption of BF2-carrying compounds: insights from theory and experiment
This communication presents a structure–property study of a few novel pyridine-based difluoroborate compounds with a N–BF2–O core, which exhibit outstanding fluorescence properties. To exploit their potential for two-photon bioimaging, relationships between the two-photon action cross section and systematic structural modifications have been investigated and unravelled.
Asymmetric synthesis of 3,3′-pyrrolidinyl-dispirooxindoles via a one-pot organocatalytic Mannich/deprotection/aza-Michael sequence
Chemical communications 52, 2249-2252 (2016). doi:10.1039/C5CC10057G
Metal-bound Nitrate Anion as an Acceptor for Halogen Bonds in mono-Halopyridine-Copper(II) nitrate Complexes
Fifteen n-halopyridine-Cu(NO3)2 complexes (n = 2, 3, 4) obtained from two different solvents, acetonitrile and ethanol, are investigated for C–X···O–N halogen bonds (XBs) in the solid state by single and powder X-ray diffraction. The nitrate anions bind copper(II) via anisobidentate modes and one of three oxygens act as an XB acceptor to halogens on the core pyridine rings. The N-metal coordination activates the electron-deficient π-system and triggers even C2- and C4-chlorines in the corresponding [Cu(2-chloropyridine)2(NO3)2] and [Cu(4-chloropyridine)2(NO3)2(ACN)] complexes to form short C–Cl2/Cl4···O–N halogen bonds. Notably, the C2–Cl2···O–N XBs with a normalized XB distance parameter (…
Halogen bonds in 2,5-dihalopyridine-copper(II) chloride complexes
Ten coordination complexes obtained through a facile reaction between 2,5-dihalopyridines and copper(II) chloride (CuCl2) are characterized using single crystal X-ray diffraction. Two series of dihalopyridine complexes based on 2-chloro-5-X-pyridine and 2-bromo-5-X-pyridine (X = F, Cl, Br and I) were prepared to analyze the C–X2/X5⋯Cl–Cu halogen bonds (XB). The influence of X2- and X5-substituents on the respective interactions was examined by comparing them to the X2/X3⋯Cl–Cu XBs found in mono-substituted halopyridine complexes, (n-X-pyridine)2·CuCl2 (n = 2, 3 and X = Cl, Br and I). Varying the X5-halogens in (2,5-dihalopyridine)2·CuCl2, the C5–X5⋯Cl–Cu XBs follow the order F5 1 and they c…
1,2,6-Thiadiazine 1-Oxides: Unsaturated Three-Dimensional S,N-Heterocycles from Sulfonimidamides.
Unprecedented three-dimensional 1,2,6-thiadiazine 1-oxides have been prepared by an aza-Michael-addition/cyclization/condensation reaction sequence starting from sulfonimidamides and propargyl ketones. The products have been further functionalized by standard cross-coupling reactions, selective bromination of the heterocyclic ring, and conversion into a β-hydroxy substituted derivative. A representative product was characterized by single-crystal X-ray structure analysis. peerReviewed
Conformational changes in Cmethyl-resorcinarene pyridine N -oxide inclusion complexes in the solid state
Aromatic N-oxides interact with Cmethyl-resorcinarene resulting in marked changes in the conformation of the host resorcinarene. In the solid state, 2- and 3-methylpyridine N-oxides form pseudo-capsular 2 : 2 endo host-guest complexes with Cmethyl-resorcinarene stabilized by C-H⋯π interactions. The Cmethyl-resorcinarene·2-methylpyridine N-oxide complex has a C4v crown conformation, while the Cmethyl-resorcinarene·3-methylpyridine N-oxide complex has a slightly open C2v boat conformation. On the contrary, other para-substituted and benzo-fused pyridine N-oxides form only exo complexes with Cmethyl-resorcinarene. In the exo complexes, the asymmetry of the guest, conformational flexibility and…
Binding Profiles of Self-Assembled Supramolecular Cages from ESI-MS Based Methodology
Confined molecular environments have peculiar characteristics that make their properties unique in the field of biological and chemical sciences. In recent years, advances in supramolecular capsule and cage synthesis have presented the possibility to interpret the principles behind their self‐assembly and functions, which has led to new molecular systems that display outstanding properties in molecular recognition and catalysis. Herein, we report a rapid method based on ESI‐MS to determine the binding profiles for linear saturated dicarboxylic acids in a series of different cages. The cages were obtained by self‐assembly of modified tris(pyridylmethyl)amine (TPMA) complexes and diamines cho…
Chemistry and Photochemistry of 2,6-Bis(2-hydroxybenzilidene)cyclohexanone. An Example of a Compound Following the Anthocyanins Network of Chemical Reactions
The kinetics and thermodynamics of the 2,6-bis(2-hydroxybenzilidene)cyclohexanone chemical reactions network was studied at different pH values using NMR, UV-vis, continuous irradiation, and flash photolysis. The chemical behavior of the system partially resembles anthocyanins and their analogue compounds. 2,6-Bis(2-hydroxybenzilidene)cyclohexanone exhibits a slow color change from yellow to red styrylflavylium under extreme acidic conditions. The rate constant for this process (5 × 10(-5) s(-1)) is pH independent and controlled by the cis-trans isomerization barrier. However, the interesting feature is the appearance of the colorless compound, 7,8-dihydro-6H-chromeno[3,2-d]xanthene, isolat…
Host-guest complexes of C-propyl-2-bromoresorcinarene with aromatic N-oxides*
The host-guest complexes of C-propyl-2-bromoresorcinarene with pyridine N-oxide, 3-methylpyridine N-oxide, quinoline N-oxide and isoquinoline N-oxide are studied using single crystal X-ray crystallography and 1H NMR spectroscopy. The C-propyl-2-bromoresorcinarene forms endo-complexes with the aromatic N-oxides in the solid-state when crystallised from either methanol or acetone. In solution, the endo-complexes were observed only in methanol-d4. In DMSO the solvent itself is a good guest, and crystallisation provides only solvate endo-complexes. The C-propyl-2-bromoresorcinarene shows remarkable flexibility when crystallised from either methanol or acetone, and packs into one-dimensional sel…
Systematic Modulation of the Supramolecular Gelation Properties of Bile Acid Alkyl Amides
The self-assembly properties of nine low-molecular-weight gelators (LMWGs) based on bile acid alkyl amides were studied in detail. Based on the results, the number of hydroxyl groups attached to the steroidal backbone plays a major role in the gelation, although the nature of the aliphatic side chain also modulates the gelation abilities. Of the 50 gel systems studied, 35 are based on lithocholic acid and 15 on cholic acid derivatives. The deoxycholic acid derivatives did not form any gels. The gelation occurred primarily in aromatic solvents and the gels manifested typical fibrous or spherical morphologies. The 13C cross-polarized magic angle spinning (CPMAS) NMR spectra measured on the cr…
Asymmetric Synthesis of Spiro Tetrahydrothiophene-indan-1,3-diones via a Squaramide-Catalyzed Sulfa-Michael/Aldol Domino Reaction
Synthesis 48(08), 1131-1138(2016). doi:10.1055/s-0035-1560412
Sterically geared tris-thioureas; transmembrane chloride transporters with unusual activity and accessibility
Tris-N-arylthioureas derived in one step from 1,3,5-tris(aminomethyl)-2,4,6-triethylbenzene are remarkably effective anion carriers. With optimised aryl substituents their activities come close to the best currently known, suggesting that they might find use as readily available standards in anion transport research.
Secoiridoids and Iridoids from Morinda asteroscepa
The new 2,3-secoiridoids morisecoiridoic acids A (1) and B (2), the new iridoid 8-acetoxyepishanzilactone (3), and four additional known iridoids (4–7) were isolated from the leaf and stem bark methanol extracts of Morinda asteroscepa using chromatographic methods. The structure of shanzilactone (4) was revised. The purified metabolites were identified using NMR spectroscopic and mass spectrometric techniques, with the absolute configuration of 1 having been established by single-crystal X-ray diffraction analysis. The crude leaf extract (10 μg/mL) and compounds 1–3 and 5 (10 μM) showed mild antiplasmodial activities against the chloroquine-sensitive malaria parasite Plasmodium falciparum (…
Inside Cover: Efficient Self-Assembly of Di-, Tri-, Tetra-, and Hexavalent Hosts with Predefined Geometries for the Investigation of Multivalency (Chem. Eur. J. 37/2015)
Shedding Light on the Interactions of Hydrocarbon Ester Substituents upon Formation of Dimeric Titanium(IV) Triscatecholates in DMSO Solution
Abstract The dissociation of hierarchically formed dimeric triple lithium bridged triscatecholate titanium(IV) helicates with hydrocarbyl esters as side groups is systematically investigated in DMSO. Primary alkyl, alkenyl, alkynyl as well as benzyl esters are studied in order to minimize steric effects close to the helicate core. The 1H NMR dimerization constants for the monomer–dimer equilibrium show some solvent dependent influence of the side chains on the dimer stability. In the dimer, the ability of the hydrocarbyl ester groups to aggregate minimizes their contacts with the solvent molecules. Due to this, most solvophobic alkyl groups show the highest dimerization tendency followed by…
Substituent Effects on the [N−I−N]+ Halogen Bond
We have investigated the influence of electron density on the three-center [N–I–N]+ halogen bond. A series of [bis(pyridine)iodine]+ and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine]+ BF4– complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by 15N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N–I–N]+ halogen bond re…
Combining organocatalysis and lanthanide catalysis: a sequential one-pot quadruple reaction sequence/hetero-Diels-Alder asymmetric synthesis of functionalized tricycles
A stereoselective one-pot synthesis of functionalized complex tricyclic polyethers has been achieved using the combination of secondary amine and lanthanide catalysis. This one-pot quadruple reaction/Hetero-Diels–Alder sequence gave good yields (per step) as well as excellent diastereo- and enantioselectivities. Furthermore, the particular combination of lanthanide complexes with organocatalysis is one of the first examples described for sequential catalysis.
Host-Guest Complexes of C-Ethyl-2-methylresorcinarene and Aromatic N,N′-Dioxides
The C‐ethyl‐2‐methylresorcinarene (1) forms 1:1 in‐cavity complexes with aromatic N,N′‐dioxides, only if each of the aromatic rings has an N−O group. The structurally different C‐shaped 2,2′‐bipyridine N,N′‐dioxide (2,2′‐BiPyNO) and the linear rod‐shaped 4,4′‐bipyridine N,N′‐dioxide (4,4′‐BiPyNO) both form 1:1 in‐cavity complexes with the host resorcinarene in C4v crown and C2v conformations, respectively. In the solid state, the host–guest interactions between the 1,3‐bis(4‐pyridyl)propane N,N′‐dioxide (BiPyPNO) and the host 1 stabilize the unfavorable anti‐gauche conformation. Contrary to the N,N′‐dioxide guests, the mono‐N‐oxide guest, 4‐phenylpyridine N‐oxide (4PhPyNO), does not form an…
Hexagonal Microparticles from Hierarchical Self-Organization of Chiral Trigonal Pd3L6 Macrotetracycles
Construction of structurally complex architectures using inherently chiral, asymmetric, or multi-heterotopic ligands is a major challenge in metallosupramolecular chemistry. Moreover, the hierarchical self-organization of such complexes is unique. Here, we introduce a water-soluble, facially amphiphilic, amphoteric, chiral, asymmetric, and hetero-tritopic ligand derived from natural bile acid, ursodeoxycholic acid. We show that via the supramolecular transmetalation reaction, using nitrates of Cu(II) or Fe(III), and subsequently Pd(II), a superchiral Pd3L6 complex can be obtained. Even though several possible constitutional isomers of Pd3L6 could be formed, because of the ligand asymmetry a…
[N⋅⋅⋅I+⋅⋅⋅N] Halogen-Bonded Dimeric Capsules from Tetrakis(3-pyridyl)ethylene Cavitands
Two [N⋅⋅⋅I+⋅⋅⋅N] halogen-bonded dimeric capsules using tetrakis(3-pyridyl)ethylene cavitands with different lower rim alkyl chains are synthesized and analyzed in solution and the gas phase. These first examples of symmetrical dimeric capsules making use of the iodonium ion (I+) as the main connecting module are characterized by 1H NMR spectroscopy, diffusion ordered NMR spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI-MS), and ion mobility-mass spectrometry (TW-IMS) experiments. The synthesis and effective halogen-bonded dimerization proceeds through analogous dimeric capsules with [N⋅⋅⋅Ag+⋅⋅⋅N] binding motifs as the intermediates as evidenced by the X-ray structures of …
Aggregation versus Biological Activity in Gold(I) Complexes. An Unexplored Concept
The aggregation process of a series of mono- and dinuclear gold(I) complexes containing a 4-ethynylaniline ligand and a phosphane at the second coordination position (PR3-Au-C≡CC6H4-NH2, complexes 1-5, and (diphos)(Au-C≡CC6H4-NH2)2, complexes 6-8), whose biological activity was previously studied by us, has been carefully analyzed through absorption, emission, and NMR spectroscopy, together with dynamic light scattering and small-angle X-ray scattering. These experiments allow us to retrieve information about how the compounds enter the cells. It was observed that all compounds present aggregation in fresh solutions, before biological treatment, and thus they must be entering the cells as a…
Heads or Tails? Sandwich-Type Metallocomplexes of Hexakis(2,3-di-O-methyl)-α-cyclodextrin
Native and synthetically modified cyclodextrins (CDs) are useful building blocks in construction of large coordination complexes and porous materials with various applications. Sandwich-type complexes (STCs) are one of the important groups in this area. Usually, coordination of secondary hydroxyls or the “head” portal of native CD molecules to a notional multinuclear ring of metal cations leads to formation of head-to-head STCs. Our study introduces a new CD-ligand, hexakis(2,3-di-O-methyl)-α-cyclodextrin, which enables formation of intriguing head-to-head, but also novel tail-to-tail STCs. Homometallic silver-based head-to-head STCs, AgPF6-STC and AgClO4-STC, were obtained by coordination …
Front Cover: The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes (Chem. Eur. J. 55/2018)
Thermodynamically driven self-assembly of pyridinearene to hexameric capsules
Pyridinearene macrocycles have previously shown unique host–guest properties in their capsular dimers including endo complexation of neutral molecules and exo complexation of anions. Here, we demonstrate for the first time the formation of hydrogen bonded hexamer of tetraisobutyl-octahydroxypyridinearene in all three states of matter – gas phase, solution and solid-state. Cationic tris(bipyridine)ruthenium(II) template was found to stabilize the hexamer in gas phase, whereas solvent molecules do this in condensed phases. In solution, the capsular hexamer was found to be the thermodynamically favoured self-assembly product and transition from dimer to hexamer occurred in course of time. The …
A coumarin based gold(i)-alkynyl complex: a new class of supramolecular hydrogelators.
A phosphine-gold(I)-alkynyl-coumarin complex, [Au{7-(prop-2-ine-1-yloxy)-1-benzopyran-2-one}(DAPTA)] (1), was synthesized and the formation of long luminescent fibers in solution was characterized via fluorescence microscopy and dynamic light scattering. The fibers presented strong blue and green luminescence, suggesting that the gold(I) in the complex increased intersystem crossing due to the heavy atom effect, resulting in a significant increase in triplet emission. The X-ray structure of the fibers indicates that both aurophilic, π–π interactions and hydrogen bonding contribute to their formation in aqueous solvents.
Asymmetric Organocatalytic Synthesis of 4-Aminoisochromanones via a Direct One-Pot Intramolecular Mannich Reaction
Synthesis 48(24), 4451 - 4458(2016). doi:10.1055/s-0035-1562522
Candida antarctica Lipase A-Based Enantiorecognition of a Highly Strained 4-Dibenzocyclooctynol (DIBO) Used for PET Imaging
The enantiomers of aromatic 4-dibenzocyclooctynol (DIBO), used for radiolabeling and subsequent conjugation of biomolecules to form radioligands for positron emission tomography (PET), were separated by kinetic resolution using lipase A from Candida antarctica (CAL-A). In optimized conditions, (R)-DIBO [(R)-1, ee 95%] and its acetylated (S)-ester [(S)-2, ee 96%] were isolated. In silico docking results explained the ability of CAL-A to differentiate the enantiomers of DIBO and to accommodate various acyl donors. Anhydrous MgCl2 was used for binding water from the reaction medium and, thus, for obtaining higher conversion by preventing hydrolysis of the product (S)-2 into the starting materi…
Asymmetric Synthesis of Spirobenzazepinones with Atroposelectivity and Spiro-1,2-Diazepinones by NHC-Catalyzed [3+4] Annulation Reactions
A strategy for the NHC-catalyzed asymmetric synthesis of spirobenzazepinones, spiro-1,2-diazepinones, and spiro-1,2-oxazepinones has been developed via [3+4]-cycloaddition reactions of isatin-derived enals (3C component) with in-situ-generated aza-o-quinone methides, azoalkenes, and nitrosoalkenes (4atom components). The [3+4] annulation strategy leads to the seven-membered target spiro heterocycles bearing an oxindole moiety in high yields and excellent enantioselectivities with a wide variety of substrates. Notably, the benzazepinone synthesis is atroposelective and an all-carbon spiro stereocenter is generated.
Efficient Conversion of Light to Chemical Energy : Directional, Chiral Photoswitches with Very High Quantum Yields
Abstract Photochromic systems have been used to achieve a number of engineering functions such as light energy conversion, molecular motors, pumps, actuators, and sensors. Key to practical applications is a high efficiency in the conversion of light to chemical energy, a rigid structure for the transmission of force to the environment, and directed motion during isomerization. We present a novel type of photochromic system (diindane diazocines) that converts visible light with an efficiency of 18 % to chemical energy. Quantum yields are exceptionally high with >70 % for the cis–trans isomerization and 90 % for the back‐reaction and thus higher than the biochemical system rhodopsin (64 %). T…
Very strong −N–X+⋯−O–N+ halogen bonds
A new (-)N-X(+)(-)O-N(+) paradigm for halogen bonding is established by using an oxygen atom as an unusual halogen bond acceptor. The strategy yielded extremely strong halogen bonded complexes with very high association constants characterized in either CDCl3 or acetone-d6 solution by (1)H NMR titrations and in the solid-state by single crystal X-ray analysis. The obtained halogen bond interactions, RXB, in the solid-state are found to be in the order of strong hydrogen bonds, viz. RXB ≈ RHB.
Halogen-Bonded Co-Crystals of Aromatic N-oxides : Polydentate Acceptors for Halogen and Hydrogen Bonds
The C-ethyl-2-methylresorcinarene (1) forms 1:1 in-cavity complexes with aromatic N,N′-dioxides, only if each of the aromatic rings has an N−O group. The structurally different C-shaped 2,2′-bipyridine N,N′-dioxide (2,2′-BiPyNO) and the linear rod-shaped 4,4′-bipyridine N,N′-dioxide (4,4′-BiPyNO) both form 1:1 in-cavity complexes with the host resorcinarene in C4v crown and C2v conformations, respectively. In the solid state, the host–guest interactions between the 1,3-bis(4-pyridyl)propane N,N′-dioxide (BiPyPNO) and the host 1 stabilize the unfavorable anti-gauche conformation. Contrary to the N,N′-dioxide guests, the mono-N-oxide guest, 4-phenylpyridine N-oxide (4PhPyNO), does not form an…
The “nitrogen effect” : Complexation with macrocycles potentiates fused heterocycles to form halogen bonds in competitive solvents
Weak intermolecular forces are typically very difficult to observe in highly competitive polar protic solvents as they are overwhelmed by the quantity of competing solvent. This is even more challenging for three-component ternary assemblies of pure organic compounds. In this work, we overcome these complications by leveraging the binding of fused aromatic N-heterocycles in an open resorcinarene cavity to template the formation of a three-component halogen-bonded ternary assembly in a protic polar solvent system. peerReviewed
N‐Heterocyclic Carbene Catalyzed Quadruple Domino Reactions: Asymmetric Synthesis of Cyclopenta[ c ]chromenones
An N-heterocyclic carbene catalyzed domino sequence via α,β-unsaturated acyl azolium intermediates has been developed. This strategy provides a convenient enantioselective route to functionalized tricyclic coumarin derivatives and cyclopentanes. DFT studies and control experiments were performed to gain better insight into the reaction mechanism.
Polymorphic chiral squaraine crystallites in textured thin films
Chirality 32(5), 619 - 631 (2020). doi:10.1002/chir.23213
Biocompatible Hydrogelators Based on Bile Acid Ethyl Amides
Four novel bile acid ethyl amides were synthetized using a well-known method. All the four compounds were characterized by IR, SEM, and X-ray crystal analyses. In addition, the cytotoxicity of the compounds was tested. Two of the prepared compounds formed organogels. Lithocholic acid derivative 1 formed hydrogels as 1% and 2% (w/v) in four different aqueous solutions. This is very intriguing regarding possible uses in biomedicine. peerReviewed
Strong N−X···O−N Halogen Bonds: Comprehensive Study on N‐Halosaccharin Pyridine N‐oxide Complexes
A detailed study of the strong N−X⋯−O−N+ (X = I, Br) halogen bonding interactions in solution and in the solid‐state reports 2×27 donor×acceptor complexes of N‐halosaccharins and pyridine N‐oxides (PyNO). Density Functional Theory (DFT) calculations were used to investigate the X···O halogen bond (XB) interaction energies in 54 complexes. The XB interaction energies were found to vary from –47.5 to –120.3 kJ mol–1, with the strongest N−I⋯−O−N+ XBs approaching those of 3‐center‐4‐electron [N–I–N]+ halogen‐bonded systems (∼160 kJ mol–1). Using a subset of 32 complexes, stabilized only through N−X···−O−N+ XB interactions, a simplified, computationally fast, electrostatic model to predict the X…
Chiral self-sorting behaviour of [2.2]paracyclophane-based bis(pyridine) ligands
Two constitutionally isomeric chiral bis(pyridine) ligands based on planar chiral 4,15-difunctionalized [2.2]paracyclophanes were synthesized, the respective enantiomers were separated via HPLC on a chiral stationary phase, and their self-assembly behaviour upon coordination to palladium(ii) ions was studied with regard to chiral self-sorting effects. As proven by NMR spectroscopy, mass spectrometry, CD spectroscopy, UV-Vis spectroscopy and X-ray crystallography both ligands form the expected dinuclear complexes upon coordination to cis-protected di- or tetravalent palladium(ii) ions, respectively, however, with distinct differences concerning their chiral self-sorting ability. peerReviewed
Anion Recognition by a Bioactive Diureidodecalin Anionophore: Solid-State, Solution, and Computational Studies
Recent work has identified a bis-(p-nitrophenyl)ureidodecalin anion carrier as a promising candidate for biomedical applications, showing good activity for chloride transport in cells yet almost no cytotoxicity. To underpin further development of this and related compounds, a detailed structural and binding investigation is reported. Crystal structures of the transporter as five solvates confirm the diaxial positioning of urea groups while revealing a degree of conformational flexibility. Structures of complexes with Cl−, Br−, NO3 −, SO4 2− and AcO−, supported by computational studies, show how the binding site can adapt to accommodate these anions. 1H NMR binding studies revealed exception…
A coumarin based gold(I)-alkynyl complex: a new class of supramolecular hydrogelators
A phosphine-gold(I)-alkynyl-coumarin complex, [Au{7-(prop-2-ine-1-yloxy)-1-benzopyran-2-one}- (DAPTA)] (1), was synthesized and the formation of long luminescent fibers in solution was characterized via fluorescence microscopy and dynamic light scattering. The fibers presented strong blue and green luminescence, suggesting that the gold(I) in the complex increased intersystem crossing due to the heavy atom effect, resulting in a significant increase in triplet emission. The X-ray structure of the fibers indicates that both aurophilic, π–π interactions and hydrogen bonding contribute to their formation in aqueous solvents. peerReviewed
Halogen Bonds in 2,5-Dihalopyridine-Copper(I) Halide Coordination Polymers
Two series of 2,5-dihalopyridine-Cu(I)A (A = I, Br) complexes based on 2-X-5-iodopyridine and 2-X-5-bromopyridine (X = F, Cl, Br and I) are characterized by using single-crystal X-ray diffraction analysis to examine the nature of C2&minus
Inclusion complexes of Cethyl-2-methylresorcinarene and pyridine N-oxides: breaking the C–I⋯−O–N+ halogen bond by host–guest complexation
C ethyl-2-Methylresorcinarene forms host–guest complexes with aromatic N-oxides through multiple intra- and intermolecular hydrogen bonds and C–H⋯π interactions. The host shows conformational flexibility to accommodate 3-methylpyridine N-oxide, while retaining a crown conformation for 2-methyl- and 4-methoxypyridine N-oxides highlighting the substituent effect of the guest. N-Methylmorpholine N-oxide, a 6-membered ring aliphatic N-oxide with a methyl at the N-oxide nitrogen, is bound by the equatorial −N–CH3 group located deep in the cavity. 2-Iodopyridine N-oxide is the only guest that manifests intermolecular N–O⋯I–C halogen bond interactions, which are broken down by the host resulting i…
Rapid self-healing and anion selectivity in metallosupramolecular gels assisted by fluorine-fluorine interactions.
Simple ML2 [M = Fe(II), Co(II), Ni(II)] complexes obtained from a perfluoroalkylamide derivative of 4-aminophenyl-2,2′,6,2′-terpyridine spontaneously, yet anion selectively, self-assemble into gels, which manifest an unprecedented rapid gel strength recovery, viz. self-healing, and thermal rearrangement in aqueous dimethyl sulfoxide. The key factor for gelation and rheological properties emerges from the fluorine–fluorine interactions between the perfluorinated chains, as the corresponding hydrocarbon derivative did not form metallogels. The perfluoro-terpyridine ligand alone formed single crystals, while its Fe(II), Co(II) or Ni(II) complexes underwent rapid gelation leading to highly enta…
Host-Guest Interactions of Sodiumsulfonatomethyleneresorcinarene and Quaternary Ammonium Halides : An Experimental-Computational Analysis of the Guest Inclusion Properties
The molecular recognition of nine quaternary alkyl- and aryl-ammonium halides (Bn) by two different receptors, Calkyl-tetrasodiumsulfonatomethyleneresorcinarene (An), were studied in solution using 1H NMR spectroscopy. Substitution of methylenesulfonate groups at 2-positions of resorcinol units resulted in an increase of cavity depth by ∼2.80 Å and a narrow cavity aperture compared to Calkyl-2-H-resorcinarenes. The effect of alkyl chain lengths on the endo-complexation, that is the ability to incorporate other than N-methyl chains inside the cavities, were investigated using ammonium cations of the type ⁺NH2(R1)(R2), (R1 = Me, Et, Bu, R2 = Bu, Ph, Bz ). The C−H⋯ interactions between guests …
Halogen Bonds in Square Planar 2,5-Dihalopyridine-Copper(II) Bromide Complexes
Strong N−X⋅⋅⋅O−N Halogen Bonds: A Comprehensive Study on N‐Halosaccharin Pyridine N ‐Oxide Complexes
A study of the strong N-X⋅⋅⋅- O-N+ (X=I, Br) halogen bonding interactions reports 2×27 donor×acceptor complexes of N-halosaccharins and pyridine N-oxides (PyNO). DFT calculations were used to investigate the X⋅⋅⋅O halogen bond (XB) interaction energies in 54 complexes. A simplified computationally fast electrostatic model was developed for predicting the X⋅⋅⋅O XBs. The XB interaction energies vary from -47.5 to -120.3 kJ mol-1 ; the strongest N-I⋅⋅⋅- O-N+ XBs approaching those of 3-center-4-electron [N-I-N]+ halogen-bonded systems (ca. 160 kJ mol-1 ). 1 H NMR association constants (KXB ) determined in CDCl3 and [D6 ]acetone vary from 2.0×100 to >108 m-1 and correlate well with the calculat…
2-Methylresorcinarene: a very high packing coefficient in a mono-anion based dimeric capsule and the X-ray crystal structure of the tetra-anion
Mono- and tetra-deprotonated 2-methylresorcinarene anions (1 and 2) as their trans-1,4-diammoniumcyclohexane (TDAC)2+ inclusion complexes are reported. The mono-anion forms a fully closed dimeric capsule [1·H2O·MeOH]22− with a cavity volume of 165 Å3 and (TDAC)2+ as the guest with an extremely high packing coefficient, PC = 84.2%, while the tetra-anion forms a close-packed structure with two structurally isomeric tetra-anions 2a and 2b with a 50 : 50 ratio in the crystal lattice. peerReviewed
Subcomponent self‐assembly of a cyclic tetranuclear Fe(II) helicate in a highly diastereoselective self‐sorting manner
Abstract An enantiomerically pure diamine based on the 4,15‐difunctionalized [2.2]paracyclophane scaffold and 2‐formylpyridine self‐assemble into an optically pure cyclic metallosupramolecular Fe4L6 helicate upon mixing with iron(II) ions in a diastereoselective subcomponent self‐assembly process. The cyclic assembly results from steric strain that prevents the formation of a smaller linear dinuclear triple‐stranded helicate, and hence, leads to the larger strain‐free assembly that fulfils the maximum occupancy rule. Interestingly, use of the racemic diamine also leads to a racemic mixture of the homochiral cyclic helicates as the major product in a highly diastereoselective narcissistic ch…
The C–I・・・⁻O–N⁺ Halogen Bonds with Tetraiodoethylene and Aromatic N-oxides
The nature of C–I⋯⁻O–N⁺ interactions, first of its kind, between non-fluorinated tetraiodoethylene XB-donor and pyridine N-oxides (PyNO) are studied by single-crystal X-ray diffraction (SCXRD) and Density Functional Theory (DFT) calculations. Despite the non-fluorinated nature of the C2I4, the I⋯O halogen bond distances are similar to well-known perfluorohaloalkane/-arene donor-PyNO analogues. With C2I4, oxygens of the N-oxides adopt exclusively 2-XB-coordination in contrast to the versatile bonding modes observed with perfluorinated XB-donors. The C2I4 as the XB donor forms with PyNO’s one-dimensional chain polymer structures in which the C2I4⋯(μ-PyNO)2⋯C2I4 segments manifesting two bondin…
Bringing a Molecular Plus One : Synergistic Binding Creates Guest-Mediated Three-Component Complexes
C-Ethyl-2-Methylresorcinarene (A), pyridine (B), and a set of ten carboxylic acids (Cn) associate to form A·B·Cn ternary assemblies with 1:1:1 stoichiometry, representing a useful class of ternary systems where the guest mediates complex formation between the host and a third component. Although individually weak in solution, the combined strength of the multiple non-covalent interactions organizes the complexes even in a highly hydrogen-bond competing methanol solution as explored by both experimental and computational methods. The interactions be-tween A·B and Cn are dependent on the pKa values of carboxylic acids. The weak interactions between A and C further reinforce the interactions b…
Host-guest complexes of C-propyl-2-bromoresorcinarene with aromatic N-oxides*
The host-guest complexes of C-propyl-2-bromoresorcinarene with pyridine N-oxide, 3-methylpyridine N-oxide, quinoline N-oxide and isoquinoline N-oxide are studied using single crystal X-ray crystallography and 1H NMR spectroscopy. The C-propyl-2-bromoresorcinarene forms endo-complexes with the aromatic N-oxides in the solid-state when crystallised from either methanol or acetone. In solution, the endo-complexes were observed only in methanol-d4. In DMSO the solvent itself is a good guest, and crystallisation provides only solvate endo-complexes. The C-propyl-2-bromoresorcinarene shows remarkable flexibility when crystallised from either methanol or acetone, and packs into one-dimensional sel…
Asymmetric Synthesis of Tetrahydrobenzofurans and Annulated Dihydropyrans via Cooperative One-Pot Organo- and Silver-Catalysis
Synthesis : journal of synthetic organic chemistry 48(19), 3207-3216(2016). doi:10.1055/s-0035-1561468
Heads or Tails? Sandwich-Type Metallo Complexes of Hexakis(2,3-di-O-methyl)-α-cyclodextrin
Native and synthetically modified cyclodextrins (CDs) are useful building blocks in the construction of large coordination complexes and porous materials with various applications. Sandwich-type co...
Endo-/exo- and halogen-bonded complexes of conformationally rigid C-ethyl-2-bromoresorcinarene and aromatic N-oxides
The host-guest complexes of conformationally rigid C-ethyl-2-bromoresorcinarene with aromatic N-oxides were studied using single crystal X-ray crystallography. Unlike that of the conformationally more flexible C-ethyl-2-methylresorcinarene, the C-ethyl-2-bromoresorcinarene cavity forms endo-complexes only with the small pyridine-N-oxides, such as pyridine N-oxide, 2-methyl-, 3-methyl- and 4-methylpyrdine N-oxide, and quinoline N-oxide. The larger 2,4,6-trimethylpyridine, 4-phenylpyridine and isoquinoline N-oxide, and 4,4-bipyridine N,N′-dioxide and 1,3-bis(4-pyridyl)propane N,N′-dioxide do not fit into the host cavity. Instead endo-acetone complexes are formed. Remarkably, differing from th…
Tridentate C–I⋯O−–N+ halogen bonds
The X-ray structures of the first co-crystals where the three oxygen lone pairs in N-oxides are fully utilized for tridentate C–I⋯O−–N+ halogen bonding with 1,ω-diiodoperfluoroalkanes are reported, studied computationally, and compared with the corresponding silver(I) N-oxide complexes. peerReviewed
Efficient Self-Assembly of Di-, Tri-, Tetra-, and Hexavalent Hosts with Predefined Geometries for the Investigation of Multivalency
Coordination-driven self-assembly of differently shaped di- to hexavalent crown-ether host molecules is described. A series of [21]crown-7- and [24]crown-8-substituted bipyridine and terpyridine ligands was synthetized in a "toolbox" approach. Subsequent coordination to 3d transition metal and ruthenium(II) ions provides an easy and fast access to host assemblies with variable valency and pre-defined orientations of the crown-ether moieties. Preliminary isothermal calorimetry (ITC) titrations provided promising results, which indicated the host complexes under study to be suitable for the future investigation of multivalent and cooperative binding. The hosts described herein will also be su…
Aromatic N-oxide templates open inclusion and dimeric capsular assemblies with methylresorcinarene
C2-2-methylresorcinarene forms host–guest complexes with pyridine N-oxide and quinoline N-oxide. In solution the NMR studies support the 1 : 1 host–guest complexes while in the solid state, the single crystal X-ray diffraction studies reveal dimeric capsule-like assemblies with 2 : 3 and 2 : 2 host–guest stoichiometry.
An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior.
By employing the subcomponent self-assembly approach utilizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin or its zinc(II) complex, 1H-4-imidazolecarbaldehyde, and either zinc(II) or iron(II) salts, we were able to prepare O-symmetric cages having a confined volume of ca. 1300 Å3 . The use of iron(II) salts yielded coordination cages in the high-spin state at room temperature, manifesting spin-crossover in solution at low temperatures, whereas corresponding zinc(II) salts led to the corresponding diamagnetic analogues. The new cages were characterized by synchrotron X-ray crystallography, high-resolution mass spectrometry, and NMR, Mössbauer, IR, and UV/Vis spectroscopy. The cage structures…
N-(2,3,5,6-Tetrafluoropyridyl)sulfoximines : synthesis, X-ray crystallography, and halogen bonding
In the presence of KOH, NH-sulfoximines react with pentafluoropyridine to give N-(tetrafluoropyridyl)sulfoximines (NTFP-sulfoximines) in moderate to excellent yields. Either a solution-based or a superior solvent-free mechanochemical protocol can be followed. X-Ray diffraction analyses of 26 products provided insight into the bond parameters and conformational rigidity of the molecular scaffold. In solid-state structures, sulfoximines with halo substituents on the S-bound arene are intermolecularly linked by C–X⋯O[double bond, length as m-dash]S (X = Cl, Br) halogen bonds. Hirshfeld surface analysis is used to assess the type of non-covalent contacts present in molecules. For mixtures of th…
Halogen Bonds in Square Planar 2,5-Dihalopyridine-Copper(II) Bromide Complexes
Halogen bonding in self-complementary 1:2 metal–ligand complexes obtained from copper(II) bromide (CuBr2) and seven 2,5-dihalopyridines were analyzed using single-crystal X-ray diffraction. All presented discrete complexes form 1D polymeric chains connected with C–X···Br–Cu halogen bonds (XB). In (2-chloro-5-X-pyridine)2·CuBr2 (X = Cl, Br, and I) only the C5-halogen and in (2-bromo-5-X-pyridine)2·CuBr2 (X = Cl, Br, and I) both C2- and C5-halogens form C–X···Br–Cu halogen bonds with the X acting as the XB donor and copper-coordinated bromide as the XB acceptor. The electron-withdrawing C2-chloride in (2-chloro-5-X-pyridine)2·CuBr2 complexes has only a minor effect on the C5–X5···Br–Cu XBs, a…
Enantioselective synthesis of 4H-pyranonaphthoquinones via sequential squaramide and silver catalysis
Chemical communications 52(8), 1669-1672(2016). doi:10.1039/C5CC09592A
Endo-/Exo- and Halogen Bonded Complexes of Conformationally Rigid Cethyl-2-bromoresorcinarene and aromatic N-oxides
The host–guest complexes of conformationally rigid C-ethyl-2-bromoresorcinarene with aromatic N-oxides were studied using single crystal X-ray crystallography. Unlike that of the conformationally more flexible C-ethyl-2-methylresorcinarene, the C-ethyl-2-bromoresorcinarene cavity forms endo-complexes only with the small pyridine-N-oxides, such as pyridine N-oxide, 2-methyl-, 3-methyl- and 4-methylpyrdine N-oxide, and quinoline N-oxide. The larger 2,4,6-trimethylpyridine, 4-phenylpyridine and isoquinoline N-oxide, and 4,4-bipyridine N,N′-dioxide and 1,3-bis(4-pyridyl)propane N,N′-dioxide do not fit into the host cavity. Instead endo-acetone complexes are formed. Remarkably, differing from th…
Hydrogen and Halogen Bond Mediated Coordination Polymers of Chloro-Substituted Pyrazin-2-Amine Copper(I) Bromide Complexes
A new class of six mono- (1
Solvent-free ball-milling subcomponent synthesis of metallosupramolecular complexes.
Subcomponent self-assembly from components A, B, C, D, and Fe(2+) under solvent-free conditions by self-sorting leads to the construction of three structurally different metallosupramolecular iron(II) complexes. Under carefully selected ball-milling conditions, tetranuclear [Fe4 (AD2 )6 ](4-) 22-component cage 1, dinuclear [Fe2 (BD2 )3 ](2-) 11-component helicate 2, and 5-component mononuclear [Fe(CD3 )](2+) complex 3 were prepared simultaneously in a one-pot reaction from 38 components. Through subcomponent substitution reaction by adding subcomponent B, the [Fe4 (AD2 )6 ](4-) cage converts quantitatively to the [Fe2 (BD2 )3 ](2-) helicate, which, in turn, upon addition of subcomponent C, …
Switchable Access to Different Spirocyclopentane Oxindoles by N-Heterocyclic Carbene Catalyzed Reactions of Isatin-Derived Enals and N-Sulfonyl Ketimines
A novel NHC-catalyzed annulation protocol for the asymmetric synthesis of biologically important β-lactam fused spirocyclopentane oxindoles with four contiguous stereocenters, including two quaternary carbon centers, was developed. Alternatively, spirocyclopentane oxindoles containing an enaminone moiety can be achieved using the same starting materials, isatin-derived enals, and N-sulfonyl ketimines, in the presence of a slightly different NHC catalytic system. This switchable annulation strategy enables the selective assembly of both heterocyclic scaffolds with good yields and excellent enantioselectivities for a broad range of substrates.
Asymmetric, Three-Component, One-Pot Synthesis of Spiropyrazolones and 2,5-Chromenediones from Aldol Condensation/NHC-Catalyzed Annulation Reactions
A novel one-pot, three-component diastereo- and enantioselective synthesis of spiropyrazolones has been developed involving the aldol condensation of an enal to generate α,β-unsaturated pyrazolones, which react with a second equivalent of enal through an N-heterocyclic carbene (NHC)-catalyzed [3+2] annulation. The desired spirocyclopentane pyrazolones are obtained in moderate to good yields and good to excellent stereoselectivities. Alternatively, starting from cyclic 1,3-diketones, 2,5-chromenediones are available through [2+4] annulation.
Bringing a Molecular Plus One: Synergistic Binding Creates Guest-Mediated Three-Component Complexes
Cethyl-2-methylresorcinarene (A), pyridine (B), and a set of 10 carboxylic acids (Cn) associate to form A·B·Cn ternary assemblies with 1:1:1 stoichiometry, representing a useful class of ternary systems where the guest mediates complex formation between the host and a third component. Although individually weak in solution, the combined strength of the multiple noncovalent interactions organizes the complexes even in a highly hydrogen-bond competing methanol solution, as explored by both experimental and computational methods. The interactions between A·B and Cn are dependent on the pKa values of carboxylic acids. The weak interactions between A and C further reinforce the interactions betw…
Mechanochemical Synthesis, Photophysical Properties, and X-ray Structures of N-Heteroacenes (Eur. J. Org. Chem. 7/2016)
Short X···N Halogen Bonds With Hexamethylenetetraamine as the Acceptor
Hexamethylenetetramine (HMTA) and N-haloimides form two types of short (imide)X···N and X–X···N (X = Br, I) halogen bonds. Nucleophilic substitution or ligand-exchange reaction on the peripheral X of X–X···N with the chloride of N-chlorosuccinimide lead to Cl–X···N halogen-bonded complexes. The 1:1 complexation of HMTA and ICl manifests the shortest I···N halogen bond [2.272(5) Å] yet reported for an HMTA acceptor. Two halogen-bonded organic frameworks are prepared using 1:4 molar ratio of HMTA and N-bromosuccinimide, each with a distinct channel shape, one possessing oval and the other square grid. The variations in channel shapes are due to tridentate and tetradentate (imide)Br···N coordi…
Methylresorcinarene: a reaction vessel to control the coordination geometry of copper(II) in pyridine N-oxide copper(II) complexes
Pyridine and 2-picolinic acid N-oxides form 2 : 2 and 2 : 1 ligand : metal (L : M) discrete L2M2 and polymeric complexes with CuCl2 and Cu(NO3)2, respectively, with copper(ii) salts. The N-oxides also form 1 : 1 host-guest complexes with methylresorcinarene. In combination, the three components form a unique 2 : 2 : 1 host-ligand-metal complex. The methylresorcinarene acts as a reaction vessel/protecting group to control the coordination of copper(ii) from cis-see-saw to trans-square planar, and from octahedral to square planar coordination geometry. These processes were studied in solution and in the solid state via(1)H NMR spectroscopy and single crystal X-ray diffraction.
Strong Emission Enhancement in pH‐Responsive 2:2 Cucurbit[8]uril Complexes
Organic fluorophores, particularly stimuli-responsive molecules, are very interesting for biological and material sciences applications, but frequently limited by aggregation- and rotation-caused photoluminescence quenching. A series of easily accessible bipyridinium fluorophores, whose emission is quenched by a twisted intramolecular charge-transfer (TICT) mechanism, is reported. Encapsulation in a cucurbit[7]uril host gave a 1:1 complex exhibiting a moderate emission increase due to destabilization of the TICT state inside the apolar cucurbituril cavity. A much stronger fluorescence enhancement is observed in 2:2 complexes with the larger cucurbit[8]uril, which is caused by additional con…
CCDC 1935909: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1450585: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Kari Rissanen|2016|CrystEngComm|18|4971|doi:10.1039/C6CE00240D
CCDC 1407239: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Kari Rissanen|2016|CrystEngComm|18|793|doi:10.1039/C5CE02354H
CCDC 1992632: Experimental Crystal Structure Determination
Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560
CCDC 1426137: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A
CCDC 1821333: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 2070639: Experimental Crystal Structure Determination
Related Article: Andrea Pinto, Catarina Roma-Rodrigues, Jas S. Ward, Rakesh Puttreddy, Kari Rissanen, Pedro V. Baptista, Alexandra R. Fernandes, Joa��o Carlos Limag, Laura Rodri��guez|2021|Inorg.Chem.|60|18753|doi:10.1021/acs.inorgchem.1c02359
CCDC 1473236: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Elina Kalenius, Robin H. A. Rasb and Kari Rissanen|2016|Chem.Commun.|52|8115|doi:10.1039/C6CC03289C
CCDC 1551407: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, John F. Trant, Kari Rissanen|2017|CrystEngComm|19|4312|doi:10.1039/C7CE00975E
CCDC 1951454: Experimental Crystal Structure Determination
Related Article: Carolina von Essen, Kari Rissanen, Rakesh Puttreddy|2019|Materials|12|3305|doi:10.3390/ma12203305
CCDC 1950786: Experimental Crystal Structure Determination
Related Article: A. Carel N. Kwamen, Marcel Schlottmann, David Van Craen, Elisabeth Isaak, Julia Baums, Li Shen, Ali Massomi, Christoph Räuber, Benjamin P. Joseph, Gerhard Raabe, Christian Göb, Iris M. Oppel, Rakesh Puttreddy, Jas S. Ward, Kari Rissanen, Roland Fröhlich, Markus Albrecht|2020|Chem.-Eur.J.|26|1396|doi:10.1002/chem.201904639
CCDC 1901279: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1901884: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Rakesh Puttreddy, Kari Rissanen|2020|Polyhedron|177|114304|doi:10.1016/j.poly.2019.114304
CCDC 1959607: Experimental Crystal Structure Determination
Related Article: Jennifer Zablocki, Oriol Arteaga, Frank Balzer, Dirk Hertel, Julian J. Holstein, Guido Clever, Jana Anhäuser, Rakesh Puttreddy, Kari Rissanen, Klaus Meerholz, Arne Lützen, Manuela Schiek|2020|Chirality|32|619|doi:10.1002/chir.23213
CCDC 1450588: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Kari Rissanen|2016|CrystEngComm|18|4971|doi:10.1039/C6CE00240D
CCDC 1935934: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1426141: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A
CCDC 2041029: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1051458: Experimental Crystal Structure Determination
Related Article: Ngong Kodiah Beyeh, Rakesh Puttreddy, Kari Rissanen|2015|RSC Advances|5|30222|doi:10.1039/C5RA03667D
CCDC 1935924: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 2027290: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1938867: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1054267: Experimental Crystal Structure Determination
Related Article: Ngong Kodiah Beyeh, Rakesh Puttreddy|2015|Dalton Trans.|44|9881|doi:10.1039/C5DT01143D
CCDC 2027281: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027279: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1935922: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1953708: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Nonappa, Elina Kalenius, Pia Jurček, Juha M. Linnanto, Rakesh Puttreddy, Hennie Valkenier, Nikolay Houbenov, Michal Babiak, Miroslav Peterek, Anthony P. Davis, Radek Marek, Kari Rissanen|2021|Cell Reports Physical Science|2|100303|doi:10.1016/j.xcrp.2020.100303
CCDC 1919439: Experimental Crystal Structure Determination
Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164
CCDC 1951456: Experimental Crystal Structure Determination
Related Article: Carolina von Essen, Kari Rissanen, Rakesh Puttreddy|2019|Materials|12|3305|doi:10.3390/ma12203305
CCDC 1901885: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Rakesh Puttreddy, Kari Rissanen|2020|Polyhedron|177|114304|doi:10.1016/j.poly.2019.114304
CCDC 1550984: Experimental Crystal Structure Determination
Related Article: Riikka Kuosmanen, Rakesh Puttreddy, Kari Rissanen, Elina Sievänen|2018|Chem.-Eur.J.|24|18676|doi:10.1002/chem.201803151
CCDC 1815761: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Kari Rissanen|2018|Eur.J.Inorg.Chem.||2393|doi:10.1002/ejic.201800144
CCDC 1821338: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1551402: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, John F. Trant, Kari Rissanen|2017|CrystEngComm|19|4312|doi:10.1039/C7CE00975E
CCDC 1966175: Experimental Crystal Structure Determination
Related Article: Kwaku Twum, J. Mikko Rautiainen, Shilin Yu, Khai-Nghi Truong, Jordan Feder, Kari Rissanen, Rakesh Puttreddy, Ngong Kodiah Beyeh|2020|Cryst.Growth Des.|20|2367|doi:10.1021/acs.cgd.9b01540
CCDC 1437950: Experimental Crystal Structure Determination
Related Article: Prasit Kumar Sahoo, Chandan Giri, Tuhin Subhra Haldar, Rakesh Puttreddy, Kari Rissanen and Prasenjit Mal|2016|Eur.J.Inorg.Chem.||1283|doi:10.1002/ejoc.201600005
CCDC 1415585: Experimental Crystal Structure Determination
Related Article: Marcel Dommaschk, Vanessa Thoms, Christian Schütt, Christian Näther, Rakesh Puttreddy, Kari Rissanen, and Rainer Herges|2015|Inorg.Chem.|54|9390|doi:10.1021/acs.inorgchem.5b01756
CCDC 2231744: Experimental Crystal Structure Determination
Related Article: Kwaku Twum, Sanaz Nadimi, Frank Boateng Osei, Rakesh Puttreddy, Yvonne Bessem Ojong, John J. Hayward, Kari Rissanen, John F. Trant, Ngong Kodiah Beyeh|2023|Chem.Asian J.|18|e202201308|doi:10.1002/asia.202201308
CCDC 1557848: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 1815759: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Kari Rissanen|2018|Eur.J.Inorg.Chem.||2393|doi:10.1002/ejic.201800144
CCDC 1935930: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1437951: Experimental Crystal Structure Determination
Related Article: Prasit Kumar Sahoo, Chandan Giri, Tuhin Subhra Haldar, Rakesh Puttreddy, Kari Rissanen and Prasenjit Mal|2016|Eur.J.Inorg.Chem.||1283|doi:10.1002/ejoc.201600005
CCDC 1935936: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1497772: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Joan J. E. Munissi, Amra Gruhonjic, Sandra Duffy, Fangfang Pan, Rakesh Puttreddy, John P. Holleran, Paul A. Fitzpatrick, Jerry Pelletier, Vicky M. Avery, Kari Rissanen, Máté Erdélyi|2017|J.Nat.Prod.|80|114|doi:10.1021/acs.jnatprod.6b00759
CCDC 1844227: Experimental Crystal Structure Determination
Related Article: Noora Svahn, Artur J. Moro, Catarina Roma‐Rodrigues, Rakesh Puttreddy, Kari Rissanen, Pedro V. Baptista, Alexandra R. Fernandes, João Carlos Lima, Laura Rodríguez|2018|Chem.-Eur.J.|24|14654|doi:10.1002/chem.201802547
CCDC 1935921: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1951457: Experimental Crystal Structure Determination
Related Article: Carolina von Essen, Kari Rissanen, Rakesh Puttreddy|2019|Materials|12|3305|doi:10.3390/ma12203305
CCDC 1550980: Experimental Crystal Structure Determination
Related Article: Riikka Kuosmanen, Rakesh Puttreddy, Kari Rissanen, Elina Sievänen|2018|Chem.-Eur.J.|24|18676|doi:10.1002/chem.201803151
CCDC 2041028: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1935927: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1452897: Experimental Crystal Structure Determination
Related Article: Anna-Carin C. Carlsson, Krenare Mehmeti, Martin Uhrbom, Alavi Karim, Michele Bedin, Rakesh Puttreddy, Roland Kleinmaier, Alexei A. Neverov, Bijan Nekoueishahraki, Jürgen Gräfenstein, Kari Rissanen, and Máté Erdélyi|2016|J.Am.Chem.Soc.|138|9853|doi:10.1021/jacs.6b03842
CCDC 1935907: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1919187: Experimental Crystal Structure Determination
Related Article: A. Carel N. Kwamen, Marcel Schlottmann, David Van Craen, Elisabeth Isaak, Julia Baums, Li Shen, Ali Massomi, Christoph Räuber, Benjamin P. Joseph, Gerhard Raabe, Christian Göb, Iris M. Oppel, Rakesh Puttreddy, Jas S. Ward, Kari Rissanen, Roland Fröhlich, Markus Albrecht|2020|Chem.-Eur.J.|26|1396|doi:10.1002/chem.201904639
CCDC 1451726: Experimental Crystal Structure Determination
Related Article: Niklas Struch, Christoph Bannwarth, Tanya K. Ronson, Yvonne Lorenz, Bernd Mienert, Norbert Wagner, Marianne Engeser, Eckhard Bill, Rakesh Puttreddy, Kari Rissanen, Johannes Beck, Stefan Grimme, Jonathan R. Nitschke, Arne Lützen|2017|Angew.Chem.,Int.Ed.|56|4930|doi:10.1002/anie.201700832
CCDC 1901284: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1951459: Experimental Crystal Structure Determination
Related Article: Carolina von Essen, Kari Rissanen, Rakesh Puttreddy|2019|Materials|12|3305|doi:10.3390/ma12203305
CCDC 2027299: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1437948: Experimental Crystal Structure Determination
Related Article: Prasit Kumar Sahoo, Chandan Giri, Tuhin Subhra Haldar, Rakesh Puttreddy, Kari Rissanen and Prasenjit Mal|2016|Eur.J.Inorg.Chem.||1283|doi:10.1002/ejoc.201600005
CCDC 1821334: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1818063: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537
CCDC 2027288: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2041027: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1407242: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Kari Rissanen|2016|CrystEngComm|18|793|doi:10.1039/C5CE02354H
CCDC 2041025: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1533110: Experimental Crystal Structure Determination
Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F
CCDC 1583123: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 2027300: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027289: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1992633: Experimental Crystal Structure Determination
Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560
CCDC 1534938: Experimental Crystal Structure Determination
Related Article: Lei Wang, Sun Li, Marcus Blümel, Rakesh Puttreddy, Anssi Peuronen, Kari Rissanen, Dieter Enders|2017|Angew.Chem.,Int.Ed.|56|8516|doi:10.1002/anie.201704210
CCDC 1966422: Experimental Crystal Structure Determination
Related Article: Jennifer Zablocki, Oriol Arteaga, Frank Balzer, Dirk Hertel, Julian J. Holstein, Guido Clever, Jana Anhäuser, Rakesh Puttreddy, Kari Rissanen, Klaus Meerholz, Arne Lützen, Manuela Schiek|2020|Chirality|32|619|doi:10.1002/chir.23213
CCDC 1935919: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1899328: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532
CCDC 1917460: Experimental Crystal Structure Determination
Related Article: A. Carel N. Kwamen, Marcel Schlottmann, David Van Craen, Elisabeth Isaak, Julia Baums, Li Shen, Ali Massomi, Christoph Räuber, Benjamin P. Joseph, Gerhard Raabe, Christian Göb, Iris M. Oppel, Rakesh Puttreddy, Jas S. Ward, Kari Rissanen, Roland Fröhlich, Markus Albrecht|2020|Chem.-Eur.J.|26|1396|doi:10.1002/chem.201904639
CCDC 1054272: Experimental Crystal Structure Determination
Related Article: Ngong Kodiah Beyeh, Rakesh Puttreddy|2015|Dalton Trans.|44|9881|doi:10.1039/C5DT01143D
CCDC 1557843: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 1938870: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1844228: Experimental Crystal Structure Determination
Related Article: Noora Svahn, Artur J. Moro, Catarina Roma‐Rodrigues, Rakesh Puttreddy, Kari Rissanen, Pedro V. Baptista, Alexandra R. Fernandes, João Carlos Lima, Laura Rodríguez|2018|Chem.-Eur.J.|24|14654|doi:10.1002/chem.201802547
CCDC 2041026: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1426136: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A
CCDC 1837609: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, S Maryamdokht Taimoory, Daniel Meister, John F Trant, Kari Rissanen|2018|Beilstein J.Org.Chem.|14|1723|doi:10.3762/bjoc.14.146
CCDC 1938871: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1935914: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1551412: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, John F. Trant, Kari Rissanen|2017|CrystEngComm|19|4312|doi:10.1039/C7CE00975E
CCDC 1583131: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1453056: Experimental Crystal Structure Determination
Related Article: Lei Wang, Sun Li, Marcus Blümel, Arne R. Philipps, Ai Wang, Rakesh Puttreddy, Kari Rissanen, Dieter Enders|2016|Angew.Chem.,Int.Ed.|55|11110|doi:10.1002/anie.201604819
CCDC 1992636: Experimental Crystal Structure Determination
Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560
CCDC 1901282: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1966174: Experimental Crystal Structure Determination
Related Article: Kwaku Twum, J. Mikko Rautiainen, Shilin Yu, Khai-Nghi Truong, Jordan Feder, Kari Rissanen, Rakesh Puttreddy, Ngong Kodiah Beyeh|2020|Cryst.Growth Des.|20|2367|doi:10.1021/acs.cgd.9b01540
CCDC 1533112: Experimental Crystal Structure Determination
Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F
CCDC 1498390: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Ulrike Warzok, Rakesh Puttreddy, Ngong Kodiah Beyeh, Christoph A. Schalley, Kari Rissanen|2016|Angew.Chem.,Int.Ed.|55|14033|doi:10.1002/anie.201607789
CCDC 1837606: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, S Maryamdokht Taimoory, Daniel Meister, John F Trant, Kari Rissanen|2018|Beilstein J.Org.Chem.|14|1723|doi:10.3762/bjoc.14.146
CCDC 1557841: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 1479470: Experimental Crystal Structure Determination
Related Article: Felix B. Schwarz, Thomas Heinrich, J. Ole Kaufmann, Andreas Lippitz, Rakesh Puttreddy, Kari Rissanen, Wolfgang E. S. Unger, Christoph A. Schalley|2016|Chem.-Eur.J.|22|14383|doi:10.1002/chem.201603156
CCDC 1935926: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1963302: Experimental Crystal Structure Determination
Related Article: Linda Zandi, Marco Makungu, Joan J. E. Munissi, Sandra Duffy, Rakesh Puttreddy, Daniel von der Heiden, Kari Rissanen, Vicky M. Avery, Stephen S. Nyandoro, Máté Erdélyi|2020|J.Nat.Prod.|83|2641|doi:10.1021/acs.jnatprod.0c00447
CCDC 1550979: Experimental Crystal Structure Determination
Related Article: Riikka Kuosmanen, Rakesh Puttreddy, Kari Rissanen, Elina Sievänen|2018|Chem.-Eur.J.|24|18676|doi:10.1002/chem.201803151
CCDC 1901276: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1411525: Experimental Crystal Structure Determination
Related Article: Hennie Valkenier, Christopher M. Dias, Kathryn L. Porter Goff, Ondřej Jurček, Rakesh Puttreddy, Kari Rissanen, Anthony P. Davis|2015|Chem.Commun.|51|14235|doi:10.1039/C5CC05737J
CCDC 1985011: Experimental Crystal Structure Determination
Related Article: Jan-Hendrik Schöbel, Marco Thomas Passia, Nadja Anna Wolter, Rakesh Puttreddy, Kari Rissanen, Carsten Bolm|2020|Org.Lett.|22|2702|doi:10.1021/acs.orglett.0c00666
CCDC 1935915: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 2001488: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 1583125: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1427937: Experimental Crystal Structure Determination
Related Article: Luca Leoni, Rakesh Puttreddy, Ondřej Jurček, Andrea Mele, Ilaria Giannicchi, Francesco Yafteh Mihan, Kari Rissanen, Antonella Dalla Cort|2016|Chem.-Eur.J.|22|18714|doi:10.1002/chem.201604313
CCDC 1051459: Experimental Crystal Structure Determination
Related Article: Ngong Kodiah Beyeh, Rakesh Puttreddy, Kari Rissanen|2015|RSC Advances|5|30222|doi:10.1039/C5RA03667D
CCDC 1550977: Experimental Crystal Structure Determination
Related Article: Riikka Kuosmanen, Rakesh Puttreddy, Kari Rissanen, Elina Sievänen|2018|Chem.-Eur.J.|24|18676|doi:10.1002/chem.201803151
CCDC 2027291: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1937081: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Gasper Maeda, Joan J.E. Munissi, Amra Gruhonjic, Paul A. Fitzpatrick, Sofia Lindblad, Sandra Duffy, Jerry Pelletier, Fangfang Pan, Rakesh Puttreddy, Vicky M. Avery, Máté Erdélyi|2019|Molecules|24|2746|doi:10.3390/molecules24152746
CCDC 1561541: Experimental Crystal Structure Determination
Related Article: Montserrat Ferrer, Leticia Giménez, Albert Gutiérrez, João Carlos Lima, Manuel Martínez, Laura Rodríguez, Avelino Martín, Rakesh Puttreddy, Kari Rissanen|2017|Dalton Trans.|46|13920|doi:10.1039/C7DT02732J
CCDC 1815760: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Kari Rissanen|2018|Eur.J.Inorg.Chem.||2393|doi:10.1002/ejic.201800144
CCDC 1821336: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1426143: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A
CCDC 1935913: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1935929: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1550981: Experimental Crystal Structure Determination
Related Article: Riikka Kuosmanen, Rakesh Puttreddy, Kari Rissanen, Elina Sievänen|2018|Chem.-Eur.J.|24|18676|doi:10.1002/chem.201803151
CCDC 1415586: Experimental Crystal Structure Determination
Related Article: Marcel Dommaschk, Vanessa Thoms, Christian Schütt, Christian Näther, Rakesh Puttreddy, Kari Rissanen, and Rainer Herges|2015|Inorg.Chem.|54|9390|doi:10.1021/acs.inorgchem.5b01756
CCDC 1407240: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Kari Rissanen|2016|CrystEngComm|18|793|doi:10.1039/C5CE02354H
CCDC 1474771: Experimental Crystal Structure Determination
Related Article: Uğur Kaya, Pankaj Chauhan, Kristina Deckers, Rakesh Puttreddy, Kari Rissanen, Gerhard Raabe, Dieter Enders|2016|Synthesis|48|3207|doi:10.1055/s-0035-1561468
CCDC 1901283: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1817835: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537
CCDC 1935912: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1474975: Experimental Crystal Structure Determination
Related Article: Uğur Kaya, Pankaj Chauhan, Kristina Deckers, Rakesh Puttreddy, Kari Rissanen, Gerhard Raabe, Dieter Enders|2016|Synthesis|48|3207|doi:10.1055/s-0035-1561468
CCDC 1550982: Experimental Crystal Structure Determination
Related Article: Riikka Kuosmanen, Rakesh Puttreddy, Kari Rissanen, Elina Sievänen|2018|Chem.-Eur.J.|24|18676|doi:10.1002/chem.201803151
CCDC 1059857: Experimental Crystal Structure Determination
Related Article: Igor Linder, Stefan Leisering, Rakesh Puttreddy, Nadine Rades, Paul Hommes, Hans-Ulrich Reissig Kari Rissanen, Christoph A. Schalley|2015|Chem.-Eur.J.|21|13035|doi:10.1002/chem.201502056
CCDC 1054270: Experimental Crystal Structure Determination
Related Article: Ngong Kodiah Beyeh, Rakesh Puttreddy|2015|Dalton Trans.|44|9881|doi:10.1039/C5DT01143D
CCDC 1440552: Experimental Crystal Structure Determination
Related Article: Kun Zhao, Ying Zhi, Xinyi Li, Rakesh Puttreddy, Kari Rissanen and Dieter Enders|2016|Chem.Commun.|52|2249|doi:10.1039/C5CC10057G
CCDC 1426139: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A
CCDC 1837611: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, S Maryamdokht Taimoory, Daniel Meister, John F Trant, Kari Rissanen|2018|Beilstein J.Org.Chem.|14|1723|doi:10.3762/bjoc.14.146
CCDC 2001484: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 1583130: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1551404: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, John F. Trant, Kari Rissanen|2017|CrystEngComm|19|4312|doi:10.1039/C7CE00975E
CCDC 1992635: Experimental Crystal Structure Determination
Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560
CCDC 1901278: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 2027295: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1837608: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, S Maryamdokht Taimoory, Daniel Meister, John F Trant, Kari Rissanen|2018|Beilstein J.Org.Chem.|14|1723|doi:10.3762/bjoc.14.146
CCDC 1935916: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1817833: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537
CCDC 1043159: Experimental Crystal Structure Determination
Related Article: Chandan Giri, Prasit Kumar Sahoo, Rakesh Puttreddy, Kari Rissanen, Prasenjit Mal|2015|Chem.-Eur.J.|21|6390|doi:10.1002/chem.201500734
CCDC 1935920: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1935925: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 2027286: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1438665: Experimental Crystal Structure Determination
Related Article: Riikka Kuosmanen, Rakesh Puttreddy, Roosa-Maria Willman, Ilkka Aijalainen, Jitka Ulrichova, Adela Galandakova, Hannu Salo, Kari Rissanen and Elina Sievänen|2016|Steroids|108|7|doi:10.1016/j.steroids.2016.02.014
CCDC 1901272: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1901285: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1951458: Experimental Crystal Structure Determination
Related Article: Carolina von Essen, Kari Rissanen, Rakesh Puttreddy|2019|Materials|12|3305|doi:10.3390/ma12203305
CCDC 1583128: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1815757: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Kari Rissanen|2018|Eur.J.Inorg.Chem.||2393|doi:10.1002/ejic.201800144
CCDC 1867147: Experimental Crystal Structure Determination
Related Article: Stefan Schoder, Hendrik V. Schröder, Luca Cera, Rakesh Puttreddy, Arne Güttler, Ute Resch‐Genger, Kari Rissanen, Christoph A. Schalley|2019|Chem.-Eur.J.|25|3257|doi:10.1002/chem.201806337
CCDC 2041018: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1479471: Experimental Crystal Structure Determination
Related Article: Felix B. Schwarz, Thomas Heinrich, J. Ole Kaufmann, Andreas Lippitz, Rakesh Puttreddy, Kari Rissanen, Wolfgang E. S. Unger, Christoph A. Schalley|2016|Chem.-Eur.J.|22|14383|doi:10.1002/chem.201603156
CCDC 1837605: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, S Maryamdokht Taimoory, Daniel Meister, John F Trant, Kari Rissanen|2018|Beilstein J.Org.Chem.|14|1723|doi:10.3762/bjoc.14.146
CCDC 1992630: Experimental Crystal Structure Determination
Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560
CCDC 1864513: Experimental Crystal Structure Determination
Related Article: Qiang Liu, Xiang-Yu Chen, Rakesh Puttreddy, Kari Rissanen, Dieter Enders|2018|Angew.Chem.,Int.Ed.|57|17100|doi:10.1002/anie.201810402
CCDC 1951452: Experimental Crystal Structure Determination
Related Article: Carolina von Essen, Kari Rissanen, Rakesh Puttreddy|2019|Materials|12|3305|doi:10.3390/ma12203305
CCDC 1426138: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A
CCDC 2041031: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1006449: Experimental Crystal Structure Determination
Related Article: Artur J. Moro, Ana-Maria Pana, Liliana Cseh, Otilia Costisor, Jorge Parola, L. Cunha-Silva, Rakesh Puttreddy, Kari Rissanen, and Fernando Pina|2014|J.Phys.Chem.A|118|6208|doi:10.1021/jp505533b
CCDC 2041032: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1901887: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Rakesh Puttreddy, Kari Rissanen|2020|Polyhedron|177|114304|doi:10.1016/j.poly.2019.114304
CCDC 1415587: Experimental Crystal Structure Determination
Related Article: Marcel Dommaschk, Vanessa Thoms, Christian Schütt, Christian Näther, Rakesh Puttreddy, Kari Rissanen, and Rainer Herges|2015|Inorg.Chem.|54|9390|doi:10.1021/acs.inorgchem.5b01756
CCDC 1473237: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Elina Kalenius, Robin H. A. Rasb and Kari Rissanen|2016|Chem.Commun.|52|8115|doi:10.1039/C6CC03289C
CCDC 1407241: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Kari Rissanen|2016|CrystEngComm|18|793|doi:10.1039/C5CE02354H
CCDC 2041019: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1520868: Experimental Crystal Structure Determination
Related Article: Joanna Bednarska, Robert Zaleśny, Małgorzata Wielgus, Beata Jędrzejewska, Rakesh Puttreddy, Kari Rissanen, Wojciech Bartkowiak, Hans Ågren, Borys Ośmiałowski|2017|Phys.Chem.Chem.Phys.(PCCP)|19|5705|doi:10.1039/C7CP00063D
CCDC 1557842: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 1557847: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 1059858: Experimental Crystal Structure Determination
Related Article: Igor Linder, Stefan Leisering, Rakesh Puttreddy, Nadine Rades, Paul Hommes, Hans-Ulrich Reissig Kari Rissanen, Christoph A. Schalley|2015|Chem.-Eur.J.|21|13035|doi:10.1002/chem.201502056
CCDC 1817831: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537
CCDC 2027297: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2070637: Experimental Crystal Structure Determination
Related Article: Andrea Pinto, Catarina Roma-Rodrigues, Jas S. Ward, Rakesh Puttreddy, Kari Rissanen, Pedro V. Baptista, Alexandra R. Fernandes, Joa��o Carlos Limag, Laura Rodri��guez|2021|Inorg.Chem.|60|18753|doi:10.1021/acs.inorgchem.1c02359
CCDC 1817830: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537
CCDC 1821329: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 2041024: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1551411: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, John F. Trant, Kari Rissanen|2017|CrystEngComm|19|4312|doi:10.1039/C7CE00975E
CCDC 2027322: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1497770: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Joan J. E. Munissi, Amra Gruhonjic, Sandra Duffy, Fangfang Pan, Rakesh Puttreddy, John P. Holleran, Paul A. Fitzpatrick, Jerry Pelletier, Vicky M. Avery, Kari Rissanen, Máté Erdélyi|2017|J.Nat.Prod.|80|114|doi:10.1021/acs.jnatprod.6b00759
CCDC 1919442: Experimental Crystal Structure Determination
Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164
CCDC 1815756: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Kari Rissanen|2018|Eur.J.Inorg.Chem.||2393|doi:10.1002/ejic.201800144
CCDC 2027278: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1442230: Experimental Crystal Structure Determination
Related Article: Lei Wang, Sun Li, Pankaj Chauhan, Daniel Hack,Arne R. Philipps, Rakesh Puttreddy, Kari Rissanen, Gerhard Raabe, Dieter Enders|2016|Chem.-Eur.J.|22|5123|doi:10.1002/chem.201600515
CCDC 2001485: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 1935908: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 2027296: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1551410: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, John F. Trant, Kari Rissanen|2017|CrystEngComm|19|4312|doi:10.1039/C7CE00975E
CCDC 2041020: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1583127: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1424389: Experimental Crystal Structure Determination
Related Article: Carlo Bravin, Elena Badetti, Rakesh Puttreddy, Fangfang Pan, Kari Rissanen, Giulia Licini, Cristiano Zonta|2018|Chem.-Eur.J.|24|2936|doi:10.1002/chem.201704725
CCDC 2027285: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1938873: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1935918: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1935935: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 2027298: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1959539: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532
CCDC 2001490: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 2027277: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1559283: Experimental Crystal Structure Determination
Related Article: Montserrat Ferrer, Leticia Giménez, Albert Gutiérrez, João Carlos Lima, Manuel Martínez, Laura Rodríguez, Avelino Martín, Rakesh Puttreddy, Kari Rissanen|2017|Dalton Trans.|46|13920|doi:10.1039/C7DT02732J
CCDC 1424391: Experimental Crystal Structure Determination
Related Article: Carlo Bravin, Elena Badetti, Rakesh Puttreddy, Fangfang Pan, Kari Rissanen, Giulia Licini, Cristiano Zonta|2018|Chem.-Eur.J.|24|2936|doi:10.1002/chem.201704725
CCDC 1551408: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, John F. Trant, Kari Rissanen|2017|CrystEngComm|19|4312|doi:10.1039/C7CE00975E
CCDC 2027287: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2041022: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1938868: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 2027282: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1821328: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1935932: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1452898: Experimental Crystal Structure Determination
Related Article: Anna-Carin C. Carlsson, Krenare Mehmeti, Martin Uhrbom, Alavi Karim, Michele Bedin, Rakesh Puttreddy, Roland Kleinmaier, Alexei A. Neverov, Bijan Nekoueishahraki, Jürgen Gräfenstein, Kari Rissanen, and Máté Erdélyi|2016|J.Am.Chem.Soc.|138|9853|doi:10.1021/jacs.6b03842
CCDC 1450587: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Kari Rissanen|2016|CrystEngComm|18|4971|doi:10.1039/C6CE00240D
CCDC 1815762: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Kari Rissanen|2018|Eur.J.Inorg.Chem.||2393|doi:10.1002/ejic.201800144
CCDC 1938872: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1938866: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 1935928: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1551406: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, John F. Trant, Kari Rissanen|2017|CrystEngComm|19|4312|doi:10.1039/C7CE00975E
CCDC 1992631: Experimental Crystal Structure Determination
Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560
CCDC 1821327: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1054269: Experimental Crystal Structure Determination
Related Article: Ngong Kodiah Beyeh, Rakesh Puttreddy|2015|Dalton Trans.|44|9881|doi:10.1039/C5DT01143D
CCDC 1919441: Experimental Crystal Structure Determination
Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164
CCDC 1427936: Experimental Crystal Structure Determination
Related Article: Luca Leoni, Rakesh Puttreddy, Ondřej Jurček, Andrea Mele, Ilaria Giannicchi, Francesco Yafteh Mihan, Kari Rissanen, Antonella Dalla Cort|2016|Chem.-Eur.J.|22|18714|doi:10.1002/chem.201604313
CCDC 2027280: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1550978: Experimental Crystal Structure Determination
Related Article: Riikka Kuosmanen, Rakesh Puttreddy, Kari Rissanen, Elina Sievänen|2018|Chem.-Eur.J.|24|18676|doi:10.1002/chem.201803151
CCDC 1533113: Experimental Crystal Structure Determination
Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F
CCDC 1867144: Experimental Crystal Structure Determination
Related Article: Stefan Schoder, Hendrik V. Schröder, Luca Cera, Rakesh Puttreddy, Arne Güttler, Ute Resch‐Genger, Kari Rissanen, Christoph A. Schalley|2019|Chem.-Eur.J.|25|3257|doi:10.1002/chem.201806337
CCDC 2001487: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 1437949: Experimental Crystal Structure Determination
Related Article: Prasit Kumar Sahoo, Chandan Giri, Tuhin Subhra Haldar, Rakesh Puttreddy, Kari Rissanen and Prasenjit Mal|2016|Eur.J.Inorg.Chem.||1283|doi:10.1002/ejoc.201600005
CCDC 1450583: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Kari Rissanen|2016|CrystEngComm|18|4971|doi:10.1039/C6CE00240D
CCDC 1938869: Experimental Crystal Structure Determination
Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220
CCDC 2070640: Experimental Crystal Structure Determination
Related Article: Andrea Pinto, Catarina Roma-Rodrigues, Jas S. Ward, Rakesh Puttreddy, Kari Rissanen, Pedro V. Baptista, Alexandra R. Fernandes, João Carlos Limag, Laura Rodríguez|2021|Inorg.Chem.|60|18753|doi:10.1021/acs.inorgchem.1c02359
CCDC 1935931: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1450586: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Kari Rissanen|2016|CrystEngComm|18|4971|doi:10.1039/C6CE00240D
CCDC 2027294: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1482605: Experimental Crystal Structure Determination
Related Article: Fabrizio Vetica, Jeanne Fronert, Rakesh Puttreddy, Kari Rissanen, Dieter Enders|2016|Synthesis|48|4451|doi:10.1055/s-0035-1562522
CCDC 1413502: Experimental Crystal Structure Determination
Related Article: Lei Wang, Sun Li, Marcus Blümel, Arne R. Philipps, Ai Wang, Rakesh Puttreddy, Kari Rissanen, Dieter Enders|2016|Angew.Chem.,Int.Ed.|55|11110|doi:10.1002/anie.201604819
CCDC 1844226: Experimental Crystal Structure Determination
Related Article: Noora Svahn, Artur J. Moro, Catarina Roma‐Rodrigues, Rakesh Puttreddy, Kari Rissanen, Pedro V. Baptista, Alexandra R. Fernandes, João Carlos Lima, Laura Rodríguez|2018|Chem.-Eur.J.|24|14654|doi:10.1002/chem.201802547
CCDC 1815973: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Kari Rissanen|2018|Eur.J.Inorg.Chem.||2393|doi:10.1002/ejic.201800144
CCDC 1837612: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, S Maryamdokht Taimoory, Daniel Meister, John F Trant, Kari Rissanen|2018|Beilstein J.Org.Chem.|14|1723|doi:10.3762/bjoc.14.146
CCDC 1407134: Experimental Crystal Structure Determination
Related Article: Marcel Dommaschk, Vanessa Thoms, Christian Schütt, Christian Näther, Rakesh Puttreddy, Kari Rissanen, and Rainer Herges|2015|Inorg.Chem.|54|9390|doi:10.1021/acs.inorgchem.5b01756
CCDC 1935933: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1821330: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1901271: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1992634: Experimental Crystal Structure Determination
Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560
CCDC 1450582: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Kari Rissanen|2016|CrystEngComm|18|4971|doi:10.1039/C6CE00240D
CCDC 1919188: Experimental Crystal Structure Determination
Related Article: A. Carel N. Kwamen, Marcel Schlottmann, David Van Craen, Elisabeth Isaak, Julia Baums, Li Shen, Ali Massomi, Christoph Räuber, Benjamin P. Joseph, Gerhard Raabe, Christian Göb, Iris M. Oppel, Rakesh Puttreddy, Jas S. Ward, Kari Rissanen, Roland Fröhlich, Markus Albrecht|2020|Chem.-Eur.J.|26|1396|doi:10.1002/chem.201904639
CCDC 1551403: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, John F. Trant, Kari Rissanen|2017|CrystEngComm|19|4312|doi:10.1039/C7CE00975E
CCDC 1919440: Experimental Crystal Structure Determination
Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164
CCDC 1951451: Experimental Crystal Structure Determination
Related Article: Carolina von Essen, Kari Rissanen, Rakesh Puttreddy|2019|Materials|12|3305|doi:10.3390/ma12203305
CCDC 1901275: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1026387: Experimental Crystal Structure Determination
Related Article: Artur J. Moro, Bertrand Rome, Elisabet Aguiló, Julià Arcau, Rakesh Puttreddy, Kari Rissanen, João Carlos Lima, Laura Rodríguez|2015|Org.Biomol.Chem.|13|2026|doi:10.1039/C4OB02077D
CCDC 1837607: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, S Maryamdokht Taimoory, Daniel Meister, John F Trant, Kari Rissanen|2018|Beilstein J.Org.Chem.|14|1723|doi:10.3762/bjoc.14.146
CCDC 1821335: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1899329: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532
CCDC 1529901: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, Kari Rissanen|2017|ChemistryOpen|6|417|doi:10.1002/open.201700026
CCDC 2001489: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 1446165: Experimental Crystal Structure Determination
Related Article: Lei Wang, Sun Li, Pankaj Chauhan, Daniel Hack,Arne R. Philipps, Rakesh Puttreddy, Kari Rissanen, Gerhard Raabe, Dieter Enders|2016|Chem.-Eur.J.|22|5123|doi:10.1002/chem.201600515
CCDC 1438667: Experimental Crystal Structure Determination
Related Article: Riikka Kuosmanen, Rakesh Puttreddy, Roosa-Maria Willman, Ilkka Aijalainen, Jitka Ulrichova, Adela Galandakova, Hannu Salo, Kari Rissanen and Elina Sievänen|2016|Steroids|108|7|doi:10.1016/j.steroids.2016.02.014
CCDC 1979407: Experimental Crystal Structure Determination
Related Article: Widukind Moormann, Tobias Tellkamp, Eduard Stadler, Fynn R��hricht, Christian N��ther, Rakesh Puttreddy, Kari Rissanen, Georg Gescheidt, Rainer Herges |2020|Angew.Chem.,Int.Ed.|59|15081|doi:10.1002/anie.202005361
CCDC 2041023: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 2027276: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1817834: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537
CCDC 1901886: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Rakesh Puttreddy, Kari Rissanen|2020|Polyhedron|177|114304|doi:10.1016/j.poly.2019.114304
CCDC 1437740: Experimental Crystal Structure Determination
Related Article: Suruchi Mahajan, Pankaj Chauhan, Marcus Blümel, Rakesh Puttreddy, Kari Rissanen, Gerhard Raabe, Dieter Enders|2016|Synthesis|48|1131|doi:10.1055/s-0035-1560412
CCDC 1919186: Experimental Crystal Structure Determination
Related Article: A. Carel N. Kwamen, Marcel Schlottmann, David Van Craen, Elisabeth Isaak, Julia Baums, Li Shen, Ali Massomi, Christoph Räuber, Benjamin P. Joseph, Gerhard Raabe, Christian Göb, Iris M. Oppel, Rakesh Puttreddy, Jas S. Ward, Kari Rissanen, Roland Fröhlich, Markus Albrecht|2020|Chem.-Eur.J.|26|1396|doi:10.1002/chem.201904639
CCDC 1529902: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, Kari Rissanen|2017|ChemistryOpen|6|417|doi:10.1002/open.201700026
CCDC 1992637: Experimental Crystal Structure Determination
Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560
CCDC 1437686: Experimental Crystal Structure Determination
Related Article: Tao Shu, Qijian Ni, Xiaoxiao Song, Kun Zhao, Tianyu Wu, Rakesh Puttreddy, Kari Rissanen, Dieter Enders|2016|Chem.Commun.|52|2609|doi:10.1039/C5CC09581F
CCDC 1899330: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532
CCDC 1821331: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1438666: Experimental Crystal Structure Determination
Related Article: Riikka Kuosmanen, Rakesh Puttreddy, Roosa-Maria Willman, Ilkka Aijalainen, Jitka Ulrichova, Adela Galandakova, Hannu Salo, Kari Rissanen and Elina Sievänen|2016|Steroids|108|7|doi:10.1016/j.steroids.2016.02.014
CCDC 1867143: Experimental Crystal Structure Determination
Related Article: Stefan Schoder, Hendrik V. Schröder, Luca Cera, Rakesh Puttreddy, Arne Güttler, Ute Resch‐Genger, Kari Rissanen, Christoph A. Schalley|2019|Chem.-Eur.J.|25|3257|doi:10.1002/chem.201806337
CCDC 1437688: Experimental Crystal Structure Determination
Related Article: Uğur Kaya, Pankaj Chauhan, Daniel Hack, Kristina Deckers, Rakesh Puttreddy, Kari Rissanen, Dieter Enders|2016|Chem.Commun.|52|1669|doi:10.1039/C5CC09592A
CCDC 1899331: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532
CCDC 2027284: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1935917: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1901281: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1426140: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A
CCDC 1527542: Experimental Crystal Structure Determination
Related Article: Lei Wang, Sun Li, Marcus Blümel, Rakesh Puttreddy, Anssi Peuronen, Kari Rissanen, Dieter Enders|2017|Angew.Chem.,Int.Ed.|56|8516|doi:10.1002/anie.201704210
CCDC 1821332: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1426142: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ondřej Jurček, Sandip Bhowmik, Toni Mäkelä, Kari Rissanen|2016|Chem.Commun.|52|2338|doi:10.1039/C5CC09487A
CCDC 1054268: Experimental Crystal Structure Determination
Related Article: Ngong Kodiah Beyeh, Rakesh Puttreddy|2015|Dalton Trans.|44|9881|doi:10.1039/C5DT01143D
CCDC 1979408: Experimental Crystal Structure Determination
Related Article: Widukind Moormann, Tobias Tellkamp, Eduard Stadler, Fynn R��hricht, Christian N��ther, Rakesh Puttreddy, Kari Rissanen, Georg Gescheidt, Rainer Herges |2020|Angew.Chem.,Int.Ed.|59|15081|doi:10.1002/anie.202005361
CCDC 1867145: Experimental Crystal Structure Determination
Related Article: Stefan Schoder, Hendrik V. Schröder, Luca Cera, Rakesh Puttreddy, Arne Güttler, Ute Resch‐Genger, Kari Rissanen, Christoph A. Schalley|2019|Chem.-Eur.J.|25|3257|doi:10.1002/chem.201806337
CCDC 1550985: Experimental Crystal Structure Determination
Related Article: Riikka Kuosmanen, Rakesh Puttreddy, Kari Rissanen, Elina Sievänen|2018|Chem.-Eur.J.|24|18676|doi:10.1002/chem.201803151
CCDC 1901273: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1583124: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1899745: Experimental Crystal Structure Determination
Related Article: Anniina Kiesilä, Ngong Kodiah Beyeh, Jani O. Moilanen, Rakesh Puttreddy, Sven Götz, Kari Rissanen, Perdita Barran, Arne Lützen, Elina Kalenius|2019|Org.Biomol.Chem.|17|6980|doi:10.1039/C9OB01383K
CCDC 1901274: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 2027292: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1407237: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Kari Rissanen|2016|CrystEngComm|18|793|doi:10.1039/C5CE02354H
CCDC 1901280: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1901277: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1867146: Experimental Crystal Structure Determination
Related Article: Stefan Schoder, Hendrik V. Schröder, Luca Cera, Rakesh Puttreddy, Arne Güttler, Ute Resch‐Genger, Kari Rissanen, Christoph A. Schalley|2019|Chem.-Eur.J.|25|3257|doi:10.1002/chem.201806337
CCDC 1415588: Experimental Crystal Structure Determination
Related Article: Marcel Dommaschk, Vanessa Thoms, Christian Schütt, Christian Näther, Rakesh Puttreddy, Kari Rissanen, and Rainer Herges|2015|Inorg.Chem.|54|9390|doi:10.1021/acs.inorgchem.5b01756
CCDC 1901270: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284
CCDC 1966171: Experimental Crystal Structure Determination
Related Article: Kwaku Twum, J. Mikko Rautiainen, Shilin Yu, Khai-Nghi Truong, Jordan Feder, Kari Rissanen, Rakesh Puttreddy, Ngong Kodiah Beyeh|2020|Cryst.Growth Des.|20|2367|doi:10.1021/acs.cgd.9b01540
CCDC 1867142: Experimental Crystal Structure Determination
Related Article: Stefan Schoder, Hendrik V. Schröder, Luca Cera, Rakesh Puttreddy, Arne Güttler, Ute Resch‐Genger, Kari Rissanen, Christoph A. Schalley|2019|Chem.-Eur.J.|25|3257|doi:10.1002/chem.201806337
CCDC 1821337: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F
CCDC 1450584: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Kari Rissanen|2016|CrystEngComm|18|4971|doi:10.1039/C6CE00240D
CCDC 1817832: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537
CCDC 2041030: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1586249: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537
CCDC 1520867: Experimental Crystal Structure Determination
Related Article: Joanna Bednarska, Robert Zaleśny, Małgorzata Wielgus, Beata Jędrzejewska, Rakesh Puttreddy, Kari Rissanen, Wojciech Bartkowiak, Hans Ågren, Borys Ośmiałowski|2017|Phys.Chem.Chem.Phys.(PCCP)|19|5705|doi:10.1039/C7CP00063D
CCDC 1551405: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, John F. Trant, Kari Rissanen|2017|CrystEngComm|19|4312|doi:10.1039/C7CE00975E
CCDC 1992638: Experimental Crystal Structure Determination
Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560
CCDC 1533111: Experimental Crystal Structure Determination
Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F
CCDC 1837604: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, S Maryamdokht Taimoory, Daniel Meister, John F Trant, Kari Rissanen|2018|Beilstein J.Org.Chem.|14|1723|doi:10.3762/bjoc.14.146
CCDC 1583126: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1917415: Experimental Crystal Structure Determination
Related Article: A. Carel N. Kwamen, Marcel Schlottmann, David Van Craen, Elisabeth Isaak, Julia Baums, Li Shen, Ali Massomi, Christoph Räuber, Benjamin P. Joseph, Gerhard Raabe, Christian Göb, Iris M. Oppel, Rakesh Puttreddy, Jas S. Ward, Kari Rissanen, Roland Fröhlich, Markus Albrecht|2020|Chem.-Eur.J.|26|1396|doi:10.1002/chem.201904639
CCDC 1966173: Experimental Crystal Structure Determination
Related Article: Kwaku Twum, J. Mikko Rautiainen, Shilin Yu, Khai-Nghi Truong, Jordan Feder, Kari Rissanen, Rakesh Puttreddy, Ngong Kodiah Beyeh|2020|Cryst.Growth Des.|20|2367|doi:10.1021/acs.cgd.9b01540
CCDC 1497771: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Joan J. E. Munissi, Amra Gruhonjic, Sandra Duffy, Fangfang Pan, Rakesh Puttreddy, John P. Holleran, Paul A. Fitzpatrick, Jerry Pelletier, Vicky M. Avery, Kari Rissanen, Máté Erdélyi|2017|J.Nat.Prod.|80|114|doi:10.1021/acs.jnatprod.6b00759
CCDC 2001491: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 1815758: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Carolina von Essen, Kari Rissanen|2018|Eur.J.Inorg.Chem.||2393|doi:10.1002/ejic.201800144
CCDC 2027293: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1935923: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1054271: Experimental Crystal Structure Determination
Related Article: Ngong Kodiah Beyeh, Rakesh Puttreddy|2015|Dalton Trans.|44|9881|doi:10.1039/C5DT01143D
CCDC 1583122: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1529904: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, Kari Rissanen|2017|ChemistryOpen|6|417|doi:10.1002/open.201700026
CCDC 1937082: Experimental Crystal Structure Determination
Related Article: Stephen S. Nyandoro, Gasper Maeda, Joan J.E. Munissi, Amra Gruhonjic, Paul A. Fitzpatrick, Sofia Lindblad, Sandra Duffy, Jerry Pelletier, Fangfang Pan, Rakesh Puttreddy, Vicky M. Avery, Máté Erdélyi|2019|Molecules|24|2746|doi:10.3390/molecules24152746
CCDC 1951455: Experimental Crystal Structure Determination
Related Article: Carolina von Essen, Kari Rissanen, Rakesh Puttreddy|2019|Materials|12|3305|doi:10.3390/ma12203305
CCDC 1935911: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1407238: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Kari Rissanen|2016|CrystEngComm|18|793|doi:10.1039/C5CE02354H
CCDC 2070638: Experimental Crystal Structure Determination
Related Article: Andrea Pinto, Catarina Roma-Rodrigues, Jas S. Ward, Rakesh Puttreddy, Kari Rissanen, Pedro V. Baptista, Alexandra R. Fernandes, João Carlos Limag, Laura Rodríguez|2021|Inorg.Chem.|60|18753|doi:10.1021/acs.inorgchem.1c02359
CCDC 1844229: Experimental Crystal Structure Determination
Related Article: Noora Svahn, Artur J. Moro, Catarina Roma‐Rodrigues, Rakesh Puttreddy, Kari Rissanen, Pedro V. Baptista, Alexandra R. Fernandes, João Carlos Lima, Laura Rodríguez|2018|Chem.-Eur.J.|24|14654|doi:10.1002/chem.201802547
CCDC 1510190: Experimental Crystal Structure Determination
Related Article: Simon Dochain, Fabrizio Vetica, Rakesh Puttreddy, Kari Rissanen and Dieter Enders|2016|Angew.Chem.,Int.Ed.|55|16153|doi:10.1002/anie.201610196
CCDC 1586251: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Hennie Valkenier, Rakesh Puttreddy, Martin Novák, Hazel A. Sparkes, Radek Marek, Kari Rissanen, Anthony P. Davis|2018|Chem.-Eur.J.|24|8178|doi:10.1002/chem.201800537
CCDC 2027283: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 1550983: Experimental Crystal Structure Determination
Related Article: Riikka Kuosmanen, Rakesh Puttreddy, Kari Rissanen, Elina Sievänen|2018|Chem.-Eur.J.|24|18676|doi:10.1002/chem.201803151
CCDC 1951453: Experimental Crystal Structure Determination
Related Article: Carolina von Essen, Kari Rissanen, Rakesh Puttreddy|2019|Materials|12|3305|doi:10.3390/ma12203305
CCDC 2001486: Experimental Crystal Structure Determination
Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045
CCDC 1583129: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1424390: Experimental Crystal Structure Determination
Related Article: Carlo Bravin, Elena Badetti, Rakesh Puttreddy, Fangfang Pan, Kari Rissanen, Giulia Licini, Cristiano Zonta|2018|Chem.-Eur.J.|24|2936|doi:10.1002/chem.201704725
CCDC 1966172: Experimental Crystal Structure Determination
Related Article: Kwaku Twum, J. Mikko Rautiainen, Shilin Yu, Khai-Nghi Truong, Jordan Feder, Kari Rissanen, Rakesh Puttreddy, Ngong Kodiah Beyeh|2020|Cryst.Growth Des.|20|2367|doi:10.1021/acs.cgd.9b01540
CCDC 1992629: Experimental Crystal Structure Determination
Related Article: Khai-Nghi Truong, J. Mikko Rautiainen, Kari Rissanen, Rakesh Puttreddy|2020|Cryst.Growth Des.|20|5330|doi:10.1021/acs.cgd.0c00560
CCDC 1935910: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1042836: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, James A. Hutchison, Yuri Gorodetski, Jack Harrowfield, Kari Rissanen|2015|Cryst.Growth Des.|15|1559|doi:10.1021/acs.cgd.5b00053
CCDC 1551401: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, John F. Trant, Kari Rissanen|2017|CrystEngComm|19|4312|doi:10.1039/C7CE00975E
CCDC 1533114: Experimental Crystal Structure Determination
Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F
CCDC 2041021: Experimental Crystal Structure Determination
Related Article: Goulielmina Anyfanti, Antonio Bauzá, Lorenzo Gentiluomo, João Rodrigues, Gustavo Portalone, Antonio Frontera, Kari Rissanen, Rakesh Puttreddy|2021|Frontiers in Chemistry|9||doi:10.3389/fchem.2021.623595
CCDC 1935906: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, J. Mikko Rautiainen, Toni Mäkelä, Kari Rissanen|2019|Angew.Chem.,Int.Ed.|58|18610|doi:10.1002/anie.201909759
CCDC 1551409: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, John F. Trant, Kari Rissanen|2017|CrystEngComm|19|4312|doi:10.1039/C7CE00975E
CCDC 1837610: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, S Maryamdokht Taimoory, Daniel Meister, John F Trant, Kari Rissanen|2018|Beilstein J.Org.Chem.|14|1723|doi:10.3762/bjoc.14.146
CCDC 1529903: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Robin H. A. Ras, Kari Rissanen|2017|ChemistryOpen|6|417|doi:10.1002/open.201700026