6533b7d4fe1ef96bd126321e

RESEARCH PRODUCT

The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes

Laura RodríguezArtur J. MoroRakesh PuttreddyKari RissanenAlexandra R. FernandesJoão C. LimaNoora SvahnCatarina Roma-rodriguesPedro V. Baptista

subject

FosfinaMolecular ConformationOrCrystal structureCrystallography X-RayLigandsMedicinal chemistry01 natural scienceskultachemistry.chemical_compoundCoordination ComplexesDiphosphaneSolubilityCytotoxicityta116bcl-2-Associated X ProteinMembrane Potential Mitochondrialbioaktiiviset yhdisteetBiological activitybiological activity of gold(I) complexesAcetyleneProto-Oncogene Proteins c-bcl-2rigidityCompostos d'ornuclearityPhosphineCell SurvivalPhosphinesAntineoplastic Agentsphosphane ligands010402 general chemistryCatalysisCell LineStructure-Activity RelationshipMoleculeHumans010405 organic chemistrysolubilityOrganic ChemistryGeneral ChemistrykompleksiyhdisteetHCT116 Cells0104 chemical sciencesLligandschemistryQuantum TheoryGoldNonaneReactive Oxygen SpeciesGold compounds

description

A series of 4-ethynylaniline gold(I) complexes containing monophosphane (1,3,5-triaza-7-phosphaadamantane (pta; 2), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (3), and PR3 , with R=naphthyl (4), phenyl (5), and ethyl (6)) and diphosphane (bis(diphenylphosphino)acetylene (dppa; 7), trans-1,2-bis(diphenylphosphino)ethene (dppet; 8), 1,2-bis(diphenylphosphino)ethane (dppe; 9), and 1,3-bis(diphenylphosphino)propane (dppp; 10)) ligands have been synthesized and their efficiency against tumor cells evaluated. The cytotoxicity of complexes 2-10 was evaluated in human colorectal (HCT116) and ovarian (A2780) carcinoma as well as in normal human fibroblasts. All the complexes showed a higher antiproliferative effect in A2780 cells, with the cytotoxicity decreasing in the following order 5>6=9=10>8>2>4>7>3. Complex 4 stands out for its very high selectivity towards ovarian carcinoma cells (IC50 =2.3 μm) compared with colorectal carcinoma and normal human fibroblasts (IC50 >100 μm), which makes this complex very attractive for ovarian cancer therapy. Its cytotoxicity in these cells correlates with the induction of the apoptotic process and an increase of intracellular reactive oxygen species (ROS). The effects of the nuclearity, rigidity, and solubility of these complexes on their biological activity were also analyzed. X-ray crystal structure determination allowed the identification of short N-H⋅⋅⋅π contacts as the main driving forces for the three-dimensional packing in these molecules.

10.1002/chem.201802547https://doi.org/10.1002/chem.201802547