6533b86efe1ef96bd12cb602

RESEARCH PRODUCT

Bringing a Molecular Plus One: Synergistic Binding Creates Guest-Mediated Three-Component Complexes

Mohadeseh DashtiRakesh PuttreddyNgong Kodiah BeyehManu LahtinenKwaku TwumKari RissanenS. Maryamdokht TaimooryJohn F. TrantFangfang Pan

subject

chemistry.chemical_classification010405 organic chemistryStereochemistryComponent (thermodynamics)Organic ChemistryComplex formationCarboxylic AcidsCooperative bindingHydrogen Bonding010402 general chemistry01 natural sciences0104 chemical sciencesChemistrychemistry.chemical_compoundMolecular recognitionchemistryPyridineNon-covalent interactionsTernary operationBiochemistry Biophysics and Structural BiologyStoichiometry

description

Cethyl-2-methylresorcinarene (A), pyridine (B), and a set of 10 carboxylic acids (Cn) associate to form A·B·Cn ternary assemblies with 1:1:1 stoichiometry, representing a useful class of ternary systems where the guest mediates complex formation between the host and a third component. Although individually weak in solution, the combined strength of the multiple noncovalent interactions organizes the complexes even in a highly hydrogen-bond competing methanol solution, as explored by both experimental and computational methods. The interactions between A·B and Cn are dependent on the pKa values of carboxylic acids. The weak interactions between A and C further reinforce the interactions between A and B, demonstrating positive cooperativity. Our results reveal that the two-component system such as that formed by A and B can form the basis for the development of specific sensors for the molecular recognition of carboxylic acids.

https://doi.org/10.1021/acs.joc.0c00220