0000000000004866

AUTHOR

Manu Lahtinen

0000-0001-5561-3259

showing 370 related works from this author

Protocol for development of various plants leaves extract in single-pot synthesis of metal nanoparticles

2012

This article is aimed to extend a simple protocol for preparation of various plant leaves extract and their application to green synthesis of the metallic nanoparticles. Five plant leaves extract showed mild reduction and stabilization ability for silver and gold nanoparticles (AgNPs and AuNPs) at room temperature. The particle size range varied from 25 to 42 nm and 21 to 47 nm for AgNPs and AuNPs, respectively. Plant leaves extract-mediated nanoparticles were characterized to confirm the shape, size, crystallinity, and content using different spectroscopic investigations. Differences in stability of nanoparticles at different pH were also measured by zeta potential.

SilverPlant ExtractsChemistryPotentiometric titrationAnalytical chemistryMetal NanoparticlesNanoparticleGreen Chemistry TechnologyOxidation reductionAtomic and Molecular Physics and OpticsAnalytical ChemistryPlant LeavesCrystallinityX-Ray DiffractionColloidal goldZeta potentialGoldParticle sizeParticle SizeMetal nanoparticlesOxidation-ReductionInstrumentationta116SpectroscopyNuclear chemistrySpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
researchProduct

Methyl 3′,4′,5′-trimethoxybiphenyl-4-carboxylate

2013

In the title compound, C17H18O5, the dihedral angle between the benzene rings is 31.23 (16)°. In the crystal, the molecules are packed in an antiparallel fashion in layers along the a axis. In each layer, very weak C—H...O hydrogen bonds occur between the methoxy and methyl ester groups. Weak C—H...π interactions between the 4′- and 5′-methoxy groups and neighbouring benzene rings [methoxy-C–ring centroid distances = 4.075 and 3.486 Å, respectively] connect the layers.

lcsh:Chemistrylcsh:QD1-999Acta Crystallographica Section E
researchProduct

2,2′:6′,2″-Terpyridine Trimethylplatinum(IV) Iodide Complexes as Bifunctional Halogen Bond Acceptors

2016

Three new organometallic trimethylplatinum(IV) iodide complexes of 2,2′:6′,2″-terpyridines have been synthesized and characterized by 1H NMR spectroscopy, mass spectrometry, elemental analysis, and single crystal X-ray diffraction analysis. The X-ray crystal structures of PtMe3I(L) complexes 1–3 {L for 1 = 4′-chloro-2,2′:6′,2″-terpyridine, 2 = 4′-(4-cyanophenyl)-2,2′:6′,2″-terpyridine, and 3 = 4′-(4-tolyl)-2,2′:6′,2″-terpyridine} reveal distorted octahedral coordination geometry of the platinum(IV) metal centers with bidentate coordination of the terpyridine ligands. Complexation of 1–3 with iodopentafluorobenzene (IPFB) afforded single-crystal structures of halogen bond (XB) complexes 1a–3…

chemistry.chemical_classificationDenticityHalogen bond010405 organic chemistryhalogen bondsIodideGeneral ChemistryCrystal structurehalogen bond acceptors010402 general chemistryCondensed Matter PhysicsPhotochemistry01 natural sciencestransition metal complexes0104 chemical scienceschemistry.chemical_compoundCrystallographychemistryPyridineGeneral Materials ScienceTerpyridineBifunctionalta116Coordination geometryCrystal Growth & Design
researchProduct

Sterically controlled self-assembly of tetrahedral M(6)L(4) cages via cationic N-donor ligands.

2014

Tripodal cationic N-donor ligands exhibit sterically controlled self-assembly of tetrahedral M6L4 coordination cages that promote selective anion encapsulation (PF6(-)OTf(-)) in the solid state. The described method is a potential template for stepwise assembly of hetero-ligand coordination cages and polymers.

chemistry.chemical_classificationSteric effectsChemistryMetals and AlloysSolid-stateCationic polymerizationGeneral ChemistryPolymerCombinatorial chemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMaterials ChemistryCeramics and CompositesTetrahedronSelf-assemblyta116Chemical communications (Cambridge, England)
researchProduct

1-{2-[4-(4-Nitrophenyl)piperazin-1-yl]ethyl}-4-aza-1-azoniabicyclo[2.2.2]octane iodide

2012

The title compound, C18H28N5O2+·I−, was observed as a main product in an intended 1:1 reaction between 4-iodonitrobenzene and 1,4-diazabicyclo[2.2.2]octane (DABCO). In the reaction, DABCO undergoes a ring opening to yield a quaternary salt of DABCO and 1-ethyl-4-(4-nitrophenyl)piperazine with an iodide anion. The crystal structure determination was carried out as no crystal structure had been previously reported in the investigations describing the corresponding reaction with 4-chloronitrobenze. Indeed, the crystal structure of the title compound confirms the molecular composition proposed earlier for the analogous chloride salt. The cation conformation is similar to the …

chemistry.chemical_classificationCrystallographyIodideGeneral ChemistryDABCOCrystal structureCondensed Matter PhysicsBioinformaticsRing (chemistry)Organic PapersMedicinal chemistryChloridechemistry.chemical_compoundPiperazinechemistryQD901-999NitromedicineGeneral Materials Scienceta116Octanemedicine.drugActa Crystallographica Section E Structure Reports Online
researchProduct

Synthesis, characterization and thermal properties of small R2R′2N+X−-type quaternary ammonium halides

2005

Twenty-one R {sub 2} R {sup '} {sub 2}N{sup +} X {sup -} -type (R=methyl or ethyl, R {sup '}=alkyl, X=Br or I) quaternary ammonium (QA) halides have been prepared by using a novel one-pot synthetic route in which a formamide (dimethyl-, diethylformamide, etc.) is treated with alkyl halide in the presence of sodium or potassium carbonate. The formation of QA halides was verified with {sup 1}H-NMR, {sup 13}C-NMR, MS and elemental analysis. The crystal structures of four QA halides (two bromide and two iodide) were determined using X-ray single crystal diffraction, and the powder diffraction method was used to study the structural similarities between the single crystal and microcrystalline bu…

chemistry.chemical_classificationInorganic chemistryHalideCrystal structureCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsInorganic ChemistryCrystallographychemistry.chemical_compoundchemistryIonic liquidX-ray crystallographyMaterials ChemistryCeramics and CompositesMelting pointPhysical and Theoretical ChemistrySingle crystalAlkylPowder diffractionJournal of Solid State Chemistry
researchProduct

Crystal Structures and Thermal Behavior of Bis(dibenzyldimethylammonium) Tetrabromometallates(II) [M = Mn(II), Co(II) and Zn(II)] and Their Solvates

2007

Six new A2MBr4 structures [A = dibenzyldimethylammonium cation,M = Mn(II), Co(II) or Zn(II)] were crystallized with or without solvent molecules from acetonitrile, methanol and/or aqueous solutions. The isomorphous compounds [(Bz2Me2N)2][MnBr4]·CH3CN·H2O (1) and [(Bz2Me2N)2]-[ZnBr4]·CH3CN·H2O (4) crystallize in the triclinic space group P1̄ from acetonitrile solutions. The solvent molecules participate in the hydrogen bonding network inside the crystal structure. [(Bz2Me2N)2][CoBr4]·0.5CH3CN (2) crystallizes from an acetonitrile solution in the monoclinic space group P21/c. The solvent molecules fill the voids of the crystal structure. Compound 2 is isostructural with the previously reporte…

chemistry.chemical_compoundCrystallographyAqueous solutionHydrogen bondChemistryIonic bondingGeneral ChemistryCrystal structureIsostructuralTriclinic crystal systemAcetonitrileMonoclinic crystal systemZeitschrift für Naturforschung B
researchProduct

Theoretical and practical aspects of chemical functionalization of carbon nanofibers (CNFs): DFT calculations and adsorption study

2011

The nitric acid-functionalized commercial carbon nanofibers (CNFs) were comprehensively studied by instrumental (XRD, BET, SEM, TGA) and theoretical (DFT calculations) methods. The detailed surface study revealed the variation in the characteristics of functionalized CNFs, such as a decreased (up to 34%) surface area and impacted structural, electronic and chemical properties. The effects of functional groups were studied by comparison with pristine nanofibers. The results showed that the C-C bond lengths of the modified CNFs varied significantly. Chemical functionalization altered the frontier orbitals of the pristine material, and therefore altered the nature of their interactions with ot…

Environmental EngineeringMaterials scienceNanofiberschemistry.chemical_elementBioengineeringchemistry.chemical_compoundAdsorptionX-Ray DiffractionOrganic chemistryPhenolta116Waste Management and DisposalAqueous solutionRenewable Energy Sustainability and the EnvironmentCarbon nanofiberGeneral MedicineCarbonThermogravimetrychemistryChemical engineeringNanofiberThermogravimetryMicroscopy Electron ScanningSurface modificationAdsorptionCarbonBioresource Technology
researchProduct

First bisphosphonate hydrogelators: potential composers of biocompatible gels

2020

Recently, investigation of hydrogels has gained ever increasing attention mostly because of their biomedical and pharmaceutical properties, and novel hydrogelators are constantly studied to find functional applications. Bisphosphonates (BPs) are well-known compounds applicable in different fields but are mostly used in clinics as drugs for bone-related diseases. In this study, a novel class of BP-hydrogelators together with a BP-organogelator was found, and the gelating abilities of the compounds were studied. Several techniques to analyze the structure and the properties of the formed gels were used, including solid state 13C and 31P CPMAS and solution state NMR spectroscopy, IR spectrosco…

Materials scienceSolution stateSelf-healing hydrogelsBiomedical EngineeringSolid-stateInfrared spectroscopyGeneral Materials ScienceGeneral ChemistryGeneral MedicineNuclear magnetic resonance spectroscopyBiocompatible materialta116Combinatorial chemistryJournal of Materials Chemistry B
researchProduct

Cyclic dipeptides: catalyst/promoter-free, rapid and environmentally benign cyclization of free amino acids

2011

“The best catalyst is no catalyst.” With growing public concern over global warming and the amount of greenhouse gases, it is important to reduce the amount of chemicals and eliminate waste, to obtain better results in a simple, selective, safe, and environmentally benign fashion compared to conventional tedious chemical synthesis. Herein, we disclose an environmentally benign, rapid, catalyst/promoter/coupling reagent-free cyclization procedure of free amino acids to furnish exclusively cyclic dipeptides (2,5-diketopiperazines, DKPs) in excellent or even quantitative yield, along with their solid state self-assembling properties. This process is extremely simple and highly efficient with l…

Green chemistrychemistry.chemical_classificationCyclic compoundChemistryPollutionChemical synthesisCyclic peptideCatalysisSolventYield (chemistry)Environmental ChemistryOrganic chemistrySelectivityta116Green Chemistry
researchProduct

Selective recovery of phosphorus as AlPO4 from silicon-free CFB-derived fly ash leachate

2018

The prospect of phosphorus (P) recovery from siliceous fly ash was investigated. The phosphorus content in the pristine fly ash was 1.21%. Obtaining pure phosphorus products from fly ash is very challenging because of high concentration of other elements, silicon (Si) at 17.3% being the major contaminant. The fly ash was fractionated with sieve size of 125 μm to concentrate the phosphorus in the small-size fraction, which also facilitated the removal of 78% of silica (Si) in the solid phase. The fractionated fly ash was treated with 8 M HCl in order to remove 98% of Si by aging (5 h) of leachate until precipitation of Si-gel, and a phosphorus-rich solution is obtained. Iron (Fe) is also con…

AlPO4 precipitationpiiSilicon020209 energyphosphorus recoverychemistry.chemical_elementrauta02 engineering and technology010501 environmental sciencesRaw material01 natural sciencescomplex mixturesIndustrial and Manufacturing EngineeringironImpurity0202 electrical engineering electronic engineering information engineeringMaterials Chemistryrecovery (recapture)lentotuhkaLeachatephosphorusta116ta215fosfori0105 earth and related environmental sciencesPrecipitation (chemistry)Fe-EDTA chelationPhosphorusfungiMetals and Alloyssiliconfly ashfly ash utilizationchemistrytalteenottoReagentFly asherottaminen (tekniikka)Nuclear chemistry
researchProduct

Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa

2010

Abstract Metal nanostructures have unusual physicochemical properties and biological activities compared to their bulk parent materials. Thus in recent years a number of physical, chemical and biological techniques were applied for the development of metal nanoparticles (NP). Here we have synthesized silver and gold nanoparticles (AgNPs and AuNPs) by using leaves extracts of Rosa rugosa . Surface plasmon resonance spectra for silver and gold are obtained at 451 and 578 nm with brown yellow and pink-red color, respectively. AgNPs and AuNPs vary in size according to different leaves extract and metal concentration used for the synthesis. Different instrumental techniques were applied to chara…

NanostructureChemistryInfrared spectroscopyNanoparticleNanotechnologyMetalColloid and Surface ChemistryTransition metalColloidal goldvisual_artvisual_art.visual_art_mediumFourier transform infrared spectroscopySurface plasmon resonanceNuclear chemistryColloids and Surfaces A: Physicochemical and Engineering Aspects
researchProduct

Pyrene derived functionalized low molecular weight organic gelators and gels

2008

Pyrene derived binary functionalized low molecular weight organic gelators (FLMOGs) and gels thereof in selected organic solvents were synthesized and characterized. The functionality refers to a functional group that does not take part in formation of the supramolecular gel network, but remains free and available for other purposes, such as to bind nanoparticles or other molecules into the gel structure. Functional groups were observed to disturb gel formation strongly, if they interact with each other within the same supramolecule due to the formation of competitive structures. Preventing such interactions restored the original gel properties. A gel with weaker supramolecular bonding than…

Binding energySupramolecular chemistryGeneral ChemistryCatalysisFluorescence spectroscopySolventchemistry.chemical_compoundsymbols.namesakechemistryFunctional groupPolymer chemistryMaterials ChemistrysymbolsMoleculePyrenevan der Waals forceNew Journal of Chemistry
researchProduct

Development of iron oxide / activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution

2018

Iron oxide (Fe3O4) and iron oxide/activated carbon (Fe3O4/AC) were fabricated by co-precipitation method for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution in batch mode. These nanoparticles were characterized by BET, FTIR, XRD, SEM/TEM and VSM. The optimum conditions for the removal of ions were pH = 2 for Cr(VI) and 6 for Cu(II) and Cd(II), initial metal ion concentration = 50 mg L−1, nanoparticle dose = 50 mg/10 mL, temperature = 25 ± 1 °C, shaking speed = 180 rpm and contact time = 3 h. The equilibrium data of ions sorption were well described by Langmuir, Freundlich, Redlich-Peterson and Intraparticle Diffusion model. The R2 values obtained by Langmuir model were h…

XRDpHaktiivihiiliTEMrautaoksiditnanohiukkasetiron oxide nanoparticle
researchProduct

Halogen bonds in 2,5-dihalopyridine-copper(II) chloride complexes

2018

Ten coordination complexes obtained through a facile reaction between 2,5-dihalopyridines and copperIJII) chloride (CuCl2) are characterized using single crystal X-ray diffraction. Two series of dihalopyridine complexes based on 2-chloro-5-X-pyridine and 2-bromo-5-X-pyridine (X = F, Cl, Br and I) were prepared to analyze the C–X2/X5⋯Cl–Cu halogen bonds (XB). The influence of X2- and X5-substituents on the respective interactions was examined by comparing them to the X2/X3⋯Cl–Cu XBs found in mono-substituted halopyridine complexes, (n-X-pyridine)2·CuCl2 (n = 2, 3 and X = Cl, Br and I). Varying the X5-halogens in (2,5-dihalopyridine)2·CuCl2, the C5–X5⋯Cl–Cu XBs follow the order F5 1 and they c…

kemialliset sidoksetcoordination complexeskompleksiyhdisteetchemical bonds
researchProduct

Tetrameric and Dimeric [N∙∙∙I+∙∙∙N] Halogen-Bonded Supramolecular Cages

2017

Tripodal N-donor ligands are used to form halogen-bonded assemblies via structurally analogous Ag+-complexes. Selective formation of discrete tetrameric I6L4 and dimeric I3L2 halonium cages, wherein multiple [N∙∙∙I+∙∙∙N] halogen bonds are used in concert, can be achieved by using sterically rigidified cationic tris(1-methyl-1-azonia-4-azabicyclo[2.2.2]octane)-mesitylene ligand, L1(PF6)3, and flexible ligand 1,3,5-tris(imidazole-1-ylmethyl)-2,4,6-trimethylbenzene, L2, respectively. The iodonium cages, I6L14(PF6)18 and I3L22(PF6)3, were obtained through the [N∙∙∙Ag+∙∙∙N] → [N∙∙∙I+∙∙∙N] cation exchange reaction between the corresponding Ag6L14(PF6)18 and Ag3L22(PF6)3 coordination cages, prepar…

Steric effectssupramolecular cagesHalogen bond010405 organic chemistryStereochemistryLigandOrganic Chemistryhalogen bondsCationic polymerizationSupramolecular chemistryGeneral Chemistry010402 general chemistry01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundCrystallographychemistryHalogenHalonium ionta116OctaneChemistry: A European Journal
researchProduct

Hydrogen and Deuterium Incorporation in ZnO Films Grown by Atomic Layer Deposition

2021

Zinc oxide (ZnO) thin films were grown by atomic layer deposition using diethylzinc (DEZ) and water. In addition to depositions with normal water, heavy water (2H2O) was used in order to study the reaction mechanisms and the hydrogen incorporation at different deposition temperatures from 30 to 200 °C. The total hydrogen concentration in the films was found to increase as the deposition temperature decreased. When the deposition temperature decreased close to room temperature, the main source of impurity in hydrogen changed from 1H to 2H. A sufficiently long purging time changed the main hydrogen isotope incorporated in the film back to 1H. A multiple short pulse scheme was used to study th…

ToF-ERDAMaterials scienceHydrogenAnalytical chemistrychemistry.chemical_elementZincAtomic layer depositionchemistry.chemical_compoundImpuritysinkkioksidiMaterials ChemistryThin filmDeposition (law)Heavy waterdiethylzincSurfaces and InterfacesatomikerroskasvatusEngineering (General). Civil engineering (General)heavy waterSurfaces Coatings and FilmschemistryDeuteriumALDvetyZnOTA1-2040ohutkalvot
researchProduct

Synthesis and thermal behavior of Janus dendrimers, part 2

2010

Abstract The thermal properties of twelve Janus-type dendrimers up to the second generation were evaluated by termogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Compounds consist of the dendritic bisMPA based polyester moieties, and either 3,4-bis-dodecyloxybenzoic acid, 3,5-bis-dodecyloxybenzoic acid or 3,4,5-tris-dodecyloxybenzoic acid moieties, attached to opposite sides of the pentaerythritol core. The thermal stability of the compounds was evaluated by TGA, displaying onset decomposition temperatures ( T d ) at around 250 °C. DSC measurements upon heating and cooling confirmed that OH terminated Janus dendrimers featuring large polarity difference in opposite …

chemistry.chemical_classificationMaterials scienceMesophaseCondensed Matter PhysicsPentaerythritolThermogravimetryCrystallographychemistry.chemical_compoundDifferential scanning calorimetrychemistryDendrimerThermal stabilityPhysical and Theoretical ChemistryThermal analysisInstrumentationAlkylThermochimica Acta
researchProduct

Crystallization, spectral, crystallographical, and thermoanalytical studies of succinobucol polymorphism.

2011

Four different polymorphs, A, C, D, and E, of succinobucol were isolated and characterized by means of solid-state nuclear magnetic resonance spectroscopy, single crystal and powder X-ray diffraction, differential scanning calorimetry, thermogravimetry, and attenuated total reflection–infrared spectroscopy. From a number of experiments, the same polymorphs (C, D, and E) and an equilibrium phase mixture B consisting of polymorphs C and D were repeatedly gained using different solvents or their mixtures. Although polymorph A was obtained directly from recrystallization only on few occasions, polymorphs C, D, and E proved to be metastable kinetic polymorphs, which slowly transform to a thermod…

Models MolecularMagnetic Resonance SpectroscopyCalorimetry Differential ScanningSpectrophotometry InfraredChemistryPharmaceutical ScienceNuclear magnetic resonance spectroscopyCrystallography X-Raylaw.inventionThermogravimetryCrystallographyDifferential scanning calorimetryProbucolPolymorphism (materials science)Solid-state nuclear magnetic resonancelawThermogravimetryCrystallizationCrystallizationta116Single crystalPowder diffractionPowder DiffractionJournal of pharmaceutical sciences
researchProduct

1,1,4,4-Tetramethylpiperazinediium dibromide

2009

A small quantity of the title compound, C8H20N22+·2Br−, was formed as a by-product in a reaction between a diamine and an alkyl bromide. The asymmetric unit contains half of a centrosymmetric dication and a bromide anion. In the crystal, weak intermolecular C—H...Br hydrogen bonds consolidate the crystal packing.

röntgenlristallografiabiologyHydrogen bondAlkyl bromidedikationinen ammoniumdibromididicationic ammonium dibromideGeneral ChemistryCondensed Matter Physicsbiology.organism_classificationBioinformaticsOrganic PapersMedicinal chemistryX-ray diffractionIonDicationlcsh:ChemistryCrystalchemistry.chemical_compoundlcsh:QD1-999chemistryBromideDiamineTetraGeneral Materials ScienceActa Crystallographica Section E Structure Reports Online
researchProduct

Spin Switching with Triazolate-Strapped Ferrous Porphyrins

2019

Fe(III) porphyrins bridged with 1,2,3-triazole ligands were synthesized. Upon deprotonation, the triazolate ion coordinates to the Fe(III) ion, forming an overall neutral high-spin Fe(III) porphyrin in which the triazolate serves both as an axial ligand and as the counterion. The second axial coordination site is activated for coordination and binds p-methoxypyridine, forming a six-coordinate low-spin complex. Upon addition of a phenylazopyridine as a photodissociable ligand, the spin state of the complex can be reversibly switched with ultraviolet and visible light. The system provides the basis for the development of switchable catalase- and peroxidase-type catalysts and molecular spin sw…

chemistry.chemical_classificationkemiallinen synteesiSpin states010405 organic chemistryLigandkompleksiyhdisteet010402 general chemistry01 natural sciencesPorphyrin0104 chemical sciencesIonCatalysisInorganic Chemistrychemistry.chemical_compoundCrystallographyDeprotonationchemistrycoordination complexesPhysical and Theoretical ChemistryCounterionta116chemical synthesisVisible spectrumInorganic Chemistry
researchProduct

Properties of new asymmetrically quaternized dicationic ammonium based room-temperature ionic liquids with ether functionality

2013

Eleven asymmetrically quaternized dicationic ammonium-based room-temperature ionic liquids (DRTILs) with bis(trifluoromethanesulfonyl)imide (TFSI) were synthesized and characterized, along with 11 analogous dibromide precursors. Two-step synthesis was used to diquaternize tetramethyl-1,3-propanediamine and 2-(dimethylamino)-ethyl ether amines with a variety of alkyl and ether functionalized side chain groups (R1 ≠ R2). Each salt contain 1 to 3 ether groups located either in a linkage or in a side chain moieties. Structural and thermoanalytical properties, water content, and viscosity have been characterized using, for example, NMR, mass spectrometry (MS), X-ray diffraction, and thermal anal…

chemistry.chemical_classificationChemistryGeneral Chemical EngineeringInorganic chemistrySalt (chemistry)EtherGeneral Chemistrychemistry.chemical_compoundPolymer chemistryIonic liquidSide chainThermal analysisGlass transitionImideta116AlkylJournal of Chemical & Engineering Data
researchProduct

N,N-Dimethyl-N-propylpropan-1-aminium chloride monohydrate

2008

The title compound, C8H20N+·Cl−·H2O, has been prepared by a simple one-pot synthesis route followed by anion exchange using resin. In the crystal structure, the cations are packed in such a way that channels exist parallel to the b axis. These channels are filled by the anions and water molecules, which interact via O—H...Cl hydrogen bonds [O...Cl = 3.285 (3) and 3.239 (3) Å] to form helical chains. The cations are involved in weak intermolecular C—H...Cl and C—H...O hydrogen bonds. The title compound is not isomorphous with the bromo or iodo analogues.

röntgendiffraktioCrystallographyIon exchangeChemistryHydrogen bondGeneral ChemistryCrystal structurekvaternäärinen ammoniumkloridiCondensed Matter Physicscomputer.software_genreChlorideOrganic PapersCrystallographyQD901-999medicineGeneral Materials ScienceData miningquaternary ammonium chloridecomputersingle crystal diffractionmedicine.drug
researchProduct

A new ionic liquid dimethyldinonylammonium bromide as a flow modifier for the simultaneous determination of eight carboxylates by capillary electroph…

2005

Two new methods of capillary zone electrophoresis based on aqueous phosphate running buffers with UV spectrophotometric detection were developed and optimized for the determination of eight carboxylates as copper complexes. Metalcomplexes are negatively charged, so measurements were made as anion analyses with flow reversal in the capillary. Two flow modifiers were used: a common tetradecyltrimethylammonium bromide (TTAB) and a new ionic liquid dimethyldinonylammonium bromide (DMDNAB). The methods were compared to each other. Better separation was achieved with DMDNAB as the flow modifier. Method development was done using a fused silica capillary (61 cm x 50 microm i.d.). Optimization was …

ChromatographyAqueous solutionmedicine.diagnostic_testCapillary actionOrganic ChemistryAnalytical chemistryCarboxylic Acidschemistry.chemical_elementElectrophoresis CapillaryGeneral MedicineBiochemistryCopperTrimethyl Ammonium CompoundsAnalytical ChemistryQuaternary Ammonium Compoundschemistry.chemical_compoundElectrophoresisCapillary electrophoresischemistrySpectrophotometryIonic liquidmedicineSpectrophotometry UltravioletCarboxylateWater Pollutants ChemicalJournal of chromatography. A
researchProduct

Amide functionalized aminobisphenolato MoO2 and WO2 complexes: Synthesis, characterization, and alkene epoxidation catalysis

2023

The use of dioxidomolybdenum(vi) and -tungsten(vi) complexes supported by a variety of structurally different tri- and tetradentate aminobisphenolato ligands as pre-catalysts in the epoxidation of alkenes is well established. However, under the widely used standard 1 mol-% catalyst loadings these types of complexes generally show modest activity only. Recently, amide functionalities in the ligand design of various aminomonophenolato MoO2 complexes have been shown to lead to heightened catalytic activity in alkene epoxidation. In this paper we show that similar ligand amide functionalization can lead to significant enhancement in the alkene epoxidation activity of aminobisphenolato MoO2 comp…

Historyhapetusdioxidotungsten(VI)Polymers and PlasticsProcess Chemistry and TechnologyvolframikompleksiyhdisteetIndustrial and Manufacturing Engineeringdioxidomolybdenum(VI)Catalysiskatalyytitalkene epoxidationBusiness and International ManagementalkeenitPhysical and Theoretical Chemistrymolybdeeniaminobisphenolato ligandsMolecular Catalysis
researchProduct

Synthesis, NMR spectral and single crystal X-ray structural studies on Ni(II) dithiocarbamates. Fabrication of nickel sulfide nanospheres by the solv…

2014

Abstract Three dithiocarbamatonickel(II) complexes, [Ni(bzbudtc)2] (1), [Ni(bzbudtc)(PPh3)(NCS)] (2) and [Ni(bzbudtc)(PPh3)(CN)] (3) (where, bzbudtc = the N-benzyl-N-butyldithiocarbamato anion and PPh3 = triphenylphosphine), were prepared. All three complexes were analyzed by UV–Vis, IR and NMR (1H, 13C and 31P) spectra. The 13C NMR spectra of complexes 1–3 show the most crucial thioureide signal at around 200 ppm. A significant deshielding observed for the 31P signals in 2 and 3 reveals the effective bonding of phosphorus to the metal center. Single crystal X-ray analysis of crystals of 1–3 show that all the described complexes exhibit a distorted square planar coordination geometry in the…

Nickel sulfideLigandchemistry.chemical_elementCarbon-13 NMRBite angleInorganic ChemistryNickelCrystallographychemistry.chemical_compoundchemistryX-ray crystallographyMaterials ChemistryPhysical and Theoretical Chemistryta116Single crystalCoordination geometryPolyhedron
researchProduct

Series of Near-IR-Absorbing Transition Metal Complexes with Redox Active Ligands

2020

New soluble and intensely near-IR-absorbing transition metal (Ti, Zr, V, Ni) complexes were synthesized using a redox non-innocent N,N&rsquo

Spectrometry Mass Electrospray IonizationMagnetic Resonance SpectroscopyElectronsChemistry Techniques SyntheticCrystallography X-RayLigandsArticlelcsh:QD241-441Magneticslcsh:Organic chemistryX-Ray DiffractionCoordination ComplexesNickelTransition Elementsorgaaniset yhdisteetSpectroscopy Near-InfraredMolecular Structureredox-active ligandnon-innocent ligandsElectrochemical Techniquesliganditkompleksiyhdisteetmetal organic complexMetalsElectronicsOxidation-Reduction
researchProduct

Self-assembly properties of bile acid derivatives of L-cysteine, L-valine and L-serine alkyl esters

2012

Comprehensive self-assembly studies for nine bile acid amides of amino acid esters are reported. The number of the hydroxyl groups attached to the steroidal skeleton and the character of the amino acid ester moiety were used as variables when examining the self-assembly properties of the compounds. Two of the compounds were shown to undergo self-assembly leading to organogelation. In addition, preliminary self-assembly studies in aqueous mixtures of polar organic solvents were conducted. Microscopic methods (optical microscopy and scanning electron microscopy) were utilised in order to gain a deeper insight into the self-assembled structures. Furthermore, single-crystal X-ray structures for…

chemistry.chemical_classificationAqueous solutionBile acidmedicine.drug_classStereochemistryGeneral ChemistryAmino acidchemistryValineX-ray crystallographymedicineOrganic chemistryMoietySelf-assemblyta116AlkylSupramolecular Chemistry
researchProduct

Phase selective synthesis of ZnS nanoparticles from structurally new dithiocarbamate precursor

2015

Abstract A phase selective solvothermal synthesis of ZnS (wurzite) nanoparticles with a flower-like morphology using a dithiocarbamate precursor, [Zn(4-dpmpzdtc)2(dpmpz)] (1) (where, dpmpz=(diphenylmethyl)piperazine), is described. The nanoparticles were identified as ZnS (wurzite) with the particle size of about 3 to 10 nm by scanning and transmission electron microscopy as well as powder X-ray diffraction (XRD). In addition, the precursor complex 1 was characterized using single crystal X-ray diffraction.

chemistry.chemical_classificationcrystal structureMaterials sciencesynthesisMechanical EngineeringSolvothermal synthesisInorganic chemistryNanoparticleCrystal structureCondensed Matter PhysicsPiperazinechemistry.chemical_compoundchemistryMechanics of MaterialsTransmission electron microscopyPhase (matter)solvothermalwurziteGeneral Materials SciencenanoparticlesDithiocarbamateSingle crystalta116Nuclear chemistryMaterials Letters
researchProduct

Synthesis of a labile sulfur-centred ligand, [S(H)C(PPh2S)2]−: structural diversity in lithium(i), zinc(ii) and nickel(ii) complexes

2016

A high-yield synthesis of [Li{S(H)C(PPh2S)2}]2 [Li2·(3)2] was developed and this reagent was used in metathesis with ZnCl2 and NiCl2 to produce homoleptic complexes 4 and 5b in 85 and 93% yields, respectively. The solid-state structure of the octahedral complex [Zn{S(H)C(PPh2S)2}2] (4) reveals notable inequivalence between the Zn-S(C) and Zn-S(P) contacts (2.274(1) Å vs. 2.842(1) and 2.884(1) Å, respectively). Two structural isomers of the homoleptic complex [Ni{S(H)C(PPh2S)2}2] were isolated after prolonged crystallization processes. The octahedral green Ni(ii) isomer 5a exhibits the two monoprotonated ligands bonded in a tridentate (S,S',S'') mode to the Ni(ii) centre with three distinctl…

Stereochemistrychemistry.chemical_elementmetal complexes010402 general chemistry01 natural sciencesisomerizationelectronic structuresInorganic Chemistrychemistry.chemical_compoundelektronirakenteetrikkipohjaiset liganditStructural isomerSinglet stateTriplet stateHomolepticta116010405 organic chemistryLigandsulphur-centered ligands0104 chemical sciencesBond lengthNickelCrystallographyOctahedronchemistryisomerisaatiometallikompleksitDalton Transactions
researchProduct

Nucleation and growth of ZnO on PMMA by low-temperature atomic layer deposition

2015

ZnO films were grown by atomic layer deposition at 35 °C on poly(methyl methacrylate) substrates using diethylzinc and water precursors. The film growth, morphology, and crystallinity were studied using Rutherford backscattering spectrometry, time-of-flight elastic recoil detection analysis, atomic force microscopy, scanning electron microscopy, and x-ray diffraction. The uniform film growth was reached after several hundreds of deposition cycles, preceded by the precursor penetration into the porous bulk and island-type growth. After the full surface coverage, the ZnO films were stoichiometric, and consisted of large grains (diameter 30 nm) with a film surface roughness up to 6 nm (RMS). T…

Materials scienceta114Scanning electron microscopeAnalytical chemistryNucleationthin film growthCrystal growthSurfaces and InterfacesCondensed Matter PhysicsRutherford backscattering spectrometrySurfaces Coatings and FilmsElastic recoil detectionCrystallinityAtomic layer depositionSurface roughnessta116zinc oxide filmsJournal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
researchProduct

Synthesis and structural studies on Ni(II) dithiocarbamates : Exploring intramolecular Ni···H-C interactions

2017

Five new Ni(II) dithiocarbamates with NiS4, NiS2PN and NiS2PCl coordination spheres, viz. [Ni(bupmbzdtc)2] (1), [Ni(bupmbzdtc)(PPh3)(NCS)] (2), [Ni(bupmbzdtc)(PPh3)Cl] (3), [Ni(4-dpmpzdtc)(PPh3)Cl] (4) and [Ni(pbbzbudtc)(PPh3)(NCS)] (5), where bupmbzdtc = N-butyl(p-methylbenzyl)dithiocarbamato anion, 4-dpmpzdtc = 4-(diphenylmethyl)piperazinecarbodithioato anion, pbbzbudtc = N-(p-bromobenzyl)butyl-dithiocarbamato anion and PPh3 = triphenylphosphine, were synthesized and characterized by UV, IR, NMR and single crystal X-ray diffraction methods. Spectral results suggest a square planar geometry around the Ni(II) metal center for all the synthesized complexes. Single crystal X-ray structural an…

dithiocarbamateC-H···Ni interactionX-ray structural analysisNMR
researchProduct

Fabrication of superconducting tantalum nitride thin films using infra-red pulsed laser deposition

2013

We report the successful fabrication of superconducting tantalum nitride (TaN) thin films using a pulsed laser deposition technique with 1064 nm radiation. Films with thickness $ \sim $ 100 nm deposited on MgO (100) single crystals and on oxidized silicon (SiO$_{2} $) substrates exhibited a superconducting transition temperature of $\sim $ 8 K and 6 K, respectively. The topography of these films were investigated using atomic force and scanning electron microscopy, revealing fairly large area particulate free and smooth surfaces, while the structure of the films were investigated using standard $ \theta -2 \theta $ and glancing angle X-ray diffraction techniques. For films grown on MgO a fa…

Materials scienceSiliconScanning electron microscopeAnalytical chemistrychemistry.chemical_elementFOS: Physical sciences02 engineering and technology01 natural sciencesPulsed laser depositionSuperconductivity (cond-mat.supr-con)chemistry.chemical_compoundTantalum nitride0103 physical sciencesThin film010306 general physicsta116Deposition (law)Condensed Matter - Materials Scienceta114Condensed matter physicsTransition temperatureCondensed Matter - SuperconductivityHexagonal phaseMaterials Science (cond-mat.mtrl-sci)Surfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and Filmschemistry0210 nano-technology
researchProduct

Thermal and X-ray powder diffraction studies of aliphatic polyester dendrimers

2004

The syntheses and thermal and X-ray powder diffraction analyses of three sets of aliphatic polyester dendrimers based on 2,2-bis(hydroxymethyl)propionic acid as a repeating unit and 2,2-dimethyl-1,3-propanediol, 1,5-pentanediol, and 1,1,1-tris(hydroxymethyl)ethane as core molecules are reported. These dendritic polyesters were prepared in high yields with the divergent method. The thermal properties of these biodendrimers were evaluated with thermogravimetric analysis and differential scanning calorimetry. The thermal decomposition of the compounds occurred around 250 °C for the hydroxyl-ended dendrimers and around 150 °C for the acetonide-protected dendrimers. In addition, the crystallinit…

Thermogravimetric analysisDendrimersPolymers and PlasticsChemistryThermogravimetric analysis (TGA)2-bis(hydroxymethyl)propionic acid (bis-MPA)Organic ChemistryThermal decomposition2Differential scanning calorimetry (DSC)PolyesterCrystallinitychemistry.chemical_compoundDifferential scanning calorimetryDendrimerPolymer chemistryMaterials Chemistry22-bis(hydroxymethyl)propionic acid (bis-MPA)Physical chemistryAliphatic polyestersHydroxymethylPowder diffraction
researchProduct

Methyl 3′,5′-dimethoxybiphenyl-4-carboxylate

2013

In the title compound, C16H16O4, the dihedral angle between the benzene rings is 28.9 (2)°. In the crystal, molecules are packed in layers parallel to the b axis in which they are connected via weak intermolecular C—H...O contacts. Face-to-face π–π interactions also exist between the benzene rings of adjacent molecules, with centroid–centroid and plane-to-plane shift distances of 3.8597 (14) and 1.843 (2) Å, respectively.

lcsh:Chemistrylcsh:QD1-999Acta Crystallographica Section E
researchProduct

A linear Fe-O-Fe unit in bis(dibenzyldimethylammonium)-oxo-di[tribromoferrate(III)]

2006

The title compound, (C16H20N)2[Fe2Br6O], crystallizes with one dibenzyl­dimethylammonium cation and one half of a [mu]-oxo-bis­[tribromo­ferrate(III)] anion in the asymmetric unit. The bridging oxo group is situated on an inversion centre, resulting in a linear conformation for the Fe-O-Fe unit. The iron(III) cations have tetra­hedral geometry, with bond angles in the range 106.8 (1)-112.2 (1)°. The ion pairs are held together by Coulombic forces and C-H...Br hydrogen bonds. Each Br- anion forms one hydrogen bond. No C-H...O hydrogen bonds are found between the O atom in the Fe-O-Fe unit and surrounding counter-cations, consistent with the linear configuration of the Fe-O-Fe unit. peerRevie…

Metallaattiyhdistekiderakenne
researchProduct

Inorganic Anion-Mediated Supramolecular Entities of 4-Amino-3,5-Bis(4-Pyridyl)-1,2,4-Triazole Salts Assisted by the Interplay of Noncovalent Interact…

2023

The development of new families of synthetic molecular systems projecting neutral, bi-, or multi-H-bonding donor units is significant to acquire the desired selectivity within the fascinating area of anion recognition. Here, we illustrate the reaction between a neutral 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole ligand (L) with acidic solutions containing either chloride, bromide, nitrate, phosphate, iodide, sulfate, hexafluorosilicate, fluoride, tetrafluoroborate or perchlorate anions, yielding 16 new anion-mediated supramolecular entities, H2LCl2 (1), H2LBr2 (2), H2L(NO3)2 (3), HL(H2PO4) (4), H2L(H2PO4)2 (5), [H2L]2I4 (6), H2L(NO3)2 (7), H2L(SO4)·H2O (8), H2LSiF6 (9), H2LSiF6·2H2O (10), H2L…

supramolekulaarinen kemia
researchProduct

Improved Reactivity and Derivatization of Cellulose after Pre-Hydrolysis with Commercial Enzymes

2019

Reactivity is an important parameter when considering the chemical modification or dissolution of cellulose. Different pretreatment methods affect cellulose reactivity by decreasing its degree of polymerization (DP) and crystallinity. In this study, the molar mass of cellulose was decreased via enzymatic pretreatment. Three commercial endoglucanase-rich products were tested. The target was to reduce the viscosity of the pulp to below 200 mL/g and, thus, increase the reactivity of the cellulose. For comparison, cellulose was also pretreated with ozone, and the effects of each pretreatment method on crystallinity and monosaccharide composition of the resulting pulps were investigated. Both en…

stomatognathic diseasesentsyymitesteritstomatognathic systemenzymatic treatmentozone treatmentselluloosaotsonointiCellulosecellulose esters
researchProduct

Quaternary ammonium polyiodides as ionic liquid/soft solid electrolytes in dye-sensitized solar cells

2007

Abstract Four new quaternary ammonium iodides, (Me 2 Pe 2 N)I, (Me 2 Hex 2 N)I, (Et 2 Pe 2 N)I and (Et 2 Hex 2 N)I, were synthesized and studied as electrolytes in dye-sensitized solar cells. All compounds were solids at room temperature. Influence of varying amounts of elemental iodine and the effect of tert -butylpyridine (TBP) on the performance of the cell was also studied. Addition of iodine lowered the melting points of the resulting polyiodides. From the ammonium iodides only (Me 2 Hex 2 N)I:I 2 (10:1) was liquid at the room temperature and the others were soft solids. Under illumination from a halogen lamp source at 10 mW cm −2 intensity, the highest power conversion efficiency of 2…

General Chemical EngineeringInorganic chemistryGeneral Physics and Astronomychemistry.chemical_elementGeneral ChemistryElectrolyteIodinechemistry.chemical_compoundPolyiodideDye-sensitized solar cellchemistryIonic liquidMelting pointFast ion conductorAmmoniumJournal of Photochemistry and Photobiology A: Chemistry
researchProduct

Synthesis of a labile sulfur-centred ligand, [S(H)C(PPh2S)2]-: structural diversity in lithium(i), zinc(ii) and nickel(ii) complexes

2016

A high-yield synthesis of [Li{S(H)C(PPh2S)2}]2 [Li2·(3)2] was developed and this reagent was used in metathesis with ZnCl2 and NiCl2 to produce homoleptic complexes 4 and 5b in 85 and 93% yields, respectively. The solid-state structure of the octahedral complex [Zn{S(H)C(PPh2S)2}2] (4) reveals notable inequivalence between the Zn–S(C) and Zn–S(P) contacts (2.274(1) Å vs. 2.842(1) and 2.884(1) Å, respectively). Two structural isomers of the homoleptic complex [Ni{S(H)C(PPh2S)2}2] were isolated after prolonged crystallization processes. The octahedral green Ni(II) isomer 5a exhibits the two monoprotonated ligands bonded in a tridentate (S,S′,S′′) mode to the Ni(II) centre with three distinctl…

elektronirakenteetrikkipohjaiset liganditmetal complexesisomerisaatiosulphur-centered ligandsmetallikompleksitisomerizationelectronic structures
researchProduct

Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studie…

2015

Abstract In this study we developed a novel chitosan/Al 2 O 3 /magnetic iron oxide nanoparticle composite acting as an adsorbent for removing Methyl Orange (MO), a model anionic dye, from aqueous solution. The new adsorbent was characterized by Scanning Electron Microscope (SEM), Thermo Gravimetric Analysis (TGA), Brunauer–Emmett–Teller (BET) specific surface area, Energy Dispersive spectrometer (EDAX), powder X-ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) methods. The MO removal by the developed adsorbent was investigated using batch adsorption technique and all parameters influencing the removal efficiency such as: dose of adsorbent, pH and initial MO concentr…

Thermogravimetric analysisMaterials scienceGeneral Chemical EngineeringInorganic chemistryta221AluminaIndustrial and Manufacturing Engineeringsymbols.namesakechemistry.chemical_compoundAdsorptionDesorptionSpecific surface areaMethyl orangeEnvironmental ChemistryFourier transform infrared spectroscopyta116ChitosanAqueous solutionLangmuir adsorption modelGeneral ChemistryX-ray diffractionMethyl OrangechemistrysymbolsIron oxide nanoparticleAdsorptionNuclear chemistryChemical Engineering Journal
researchProduct

Synthesis of self-assembled mesoporous 3D In2O3 hierarchical micro flowers composed of nanosheets and their electrochemical properties

2018

This report describes the methodology for the fabrication of mesoporous In2O3 microflowers by hydrothermal and calcination procedures in which In(OH)3/In2S3 acts as an intermediate. Both In2O3 and its precursor were analyzed with scanning electron microscopy, energy dispersive X-ray spectrophotometry, transmission electron microscopy and powder X-ray diffraction. BET surface area, pore size and pore volume analyses were also carried out. Electron microscopy images clearly evidence the self-assembly of 2D nanosheets into the micro flower structure. The mechanism of self-assembly and calcination is reported. Electrochemical properties of the synthesized In2O3 micro flowers were studied. peerR…

mikrorakenteetkemiallinen synteesinanorakenteetmethodology for the fabricationmesoporous In2O3 micro flowers
researchProduct

Synthesis, NMR spectral and structural studies on mixed ligand complexes of Pd(II) dithiocarbamates: First structural report on palladium(II) dithioc…

2016

Abstract Three new mixed ligand complexes of palladium(II) dithiocarbamates; [Pd(4-dpmpzdtc)(PPh3)(SCN)] (1), [Pd(4-dpmpzdtc)(PPh3)Cl] (2) and [Pd(bzbudtc)(PPh3)Cl] (3), (where, 4-dpmpzdtc = 4-(diphenylmethyl)piperazinecarbodithioato anion, bzbudtc = N-benzyl-N-butyldithiocarbamato anion and PPh3 = triphenylphosphine) have been synthesized from their respective parent dithiocarbamates by ligand exchange reactions and characterized by IR and NMR (1H, 13C and 31P) spectroscopy. IR and NMR spectral data support the isobidentate coordination of the dithiocarbamate ligands in all complexes (1–3) in solid and in solution, respectively. Single crystal diffraction analysis of complexes 1–3 evidence…

palladium(II)synthesisStereochemistrychemistry.chemical_element010402 general chemistry01 natural sciencesSingle Crystal DiffractionAnalytical ChemistryIonInorganic Chemistryligand exchange reactionsDithiocarbamateSpectral dataSpectroscopyta116Spectroscopysingle crystal X-ray diffractionchemistry.chemical_classification010405 organic chemistryChemistryLigandOrganic ChemistryMixed ligandNMR0104 chemical sciencesCrystallographyPalladiumJournal of Molecular Structure
researchProduct

Thermal, spectroscopic and crystallographic analysis of mannose-derived linear polyols

2018

The major diastereomer formed in the Barbier-type metal-mediated allylation of D-mannose has previously been shown to adopt a perfectly linear conformation, both in solid state and in solution, resulting in the formation of hydrogen-bonded networks and subsequent aggregation from aqueous solution upon stirring. Here, a comprehensive study of the solid state structure of both the allylated D-mannose and its racemic form has been conducted. The binary melting point diagram of the system was determined by differential scanning calorimetry analysis, and the obtained results, along with structure determination by single crystal X-ray diffraction, confirmed that allylated mannose forms a true rac…

DiffractionMaterials science010402 general chemistry01 natural sciencesDifferential scanning calorimetryNMR spectroscopycrystalsGeneral Materials SciencekalorimetriaNMR-spektroskopiata116x-ray crystallographyAqueous solution010405 organic chemistryDiastereomerGeneral ChemistryCondensed Matter Physicskiteet0104 chemical sciencessokerialkoholitCrystallographysugar alcoholsPolymorphism (materials science)Melting pointEnantiomerSingle crystalcalorimetryröntgenkristallografia
researchProduct

Preparation and characterization of new low melting ammonium-based ionic liquids with ether functionality

2009

Abstract Eighteen new and three previously known but insufficiently characterized RR´3N+A− and R2R´2N+A− type (R = 2-ethoxyethyl or 4-methoxybenzyl, R´ = methyl, ethyl, n-propyl, n-butyl, n-pentyl or n-hexyl, A = Br, BF4 or PF6) quaternary ammonium (QA) salts were synthesized and characterized by using 1H and 13C NMR techniques, mass spectroscopy and elemental analysis. The bromide salts were synthesized either by treating dimethyl formamide with an ether functionalized alkyl bromide in the presence of potassium carbonate or by treating a tertiary amine with an ether functionalized alkyl bromide. The QA tetrafluoroborates and hexafluorophosphates were synthesized by metathesis reaction betw…

TetrafluoroborateTertiary amineOrganic ChemistryInorganic chemistryEtherAnalytical ChemistryInorganic ChemistryPotassium carbonatechemistry.chemical_compoundCrystallinitychemistryBromideIonic liquidPolymer chemistryThermal stabilitySpectroscopyJournal of Molecular Structure
researchProduct

The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol–water systems: An X-ray powder diffraction study

2007

Abstract The slurry-mercerization (SM) processes in 2-propanol–water and 2-propanol–ethanol–water and wet-mass-mercerization (WMM) process in ethanol–water solvents are investigated. Based on X-ray diffraction measurements in the earlier reports, we have derived a mathematical method to evaluate more exactly the conversion of cellulose I (CI) to cellulose II (CII) and used it to survey the effects of different alkali treatments on cellulose crystals. This method is very useful when the crystal system changes in a certain set of experiments are compared with each other. The optimal alcohol concentration in SM processes was found to be 80–92 w/w-% in 2-propanol–water solution, 85–90 w/w-% in …

Solvent systemintegumentary systemPolymers and PlasticsOrganic ChemistryX-rayAlcoholAlkali metalSolventchemistry.chemical_compoundchemistryPolymer chemistryMaterials ChemistryCellulosePowder diffractionNuclear chemistryCarbohydrate Polymers
researchProduct

Gold Nanoparticles on 3D-Printed Filters : From Waste to Catalysts

2019

Three-dimensionally printed solid but highly porous polyamide-12 (PA12) plate-like filters were used as selective adsorbents for capturing tetrachloroaurate from acidic solutions and leachates to prepare PA12–Au composite catalysts. The polyamide-adsorbed tetrachloroaurate can be readily reduced to gold nanoparticles by using sodium borohydride, ascorbic acid, hydrogen peroxide, UV light, or by heating. All reduction methods led to polyamide-anchored nanoparticles with an even size distribution and high dispersion. The particle sizes were somewhat dependent on the reduction method, but the average diameters were typically about 20 nm. Particle sizes were determined by using a combination of…

Materials scienceGeneral Chemical EngineeringNanoparticle02 engineering and technology010402 general chemistry01 natural sciencesArticlekultalaw.inventionSodium borohydridechemistry.chemical_compoundAdsorptionlaw3D-tulostusQD1-999General Chemistry021001 nanoscience & nanotechnologyAscorbic acid0104 chemical sciencesChemistrySelective laser sinteringchemistryChemical engineeringColloidal goldgold nanoparticlesParticlenanohiukkaset3D-printed filters0210 nano-technologyDispersion (chemistry)
researchProduct

Improved synthesis and application of conjugation-amenable polyols from d-mannose

2020

A series of polyhydroxyl sulfides and triazoles was prepared by reacting allyl and propargyl D-mannose derivatives with selected thiols and azides in thiol–ene and Huisgen click reactions. Conformational analysis by NMR spectroscopy proved that the intrinsic rigidity and linear conformation of the mannose derived polyol backbone is retained in the final click products in solution. Single crystal X-ray structure determination of one of the compounds prepared further verified that the linear conformation of the polyol segment is also retained in the solid state. In addition, an improved method for direct Barbier-type propargylation of unprotected D-mannose is reported. The new reaction protoc…

sokerialkoholitkemiallinen synteesisynthesis
researchProduct

3,5-Dimethoxy-4′-methylbiphenyl

2013

The title compound, C15H16O2, crystallizes with three independent molecules in the asymmetric unit. The intramolecular torsion angle between the aromatic rings of each molecule are −36.4 (3), 41.3 (3) and −37.8 (3)°. In the crystal, the complicated packing of the molecules forms wave-like layers along the b and c axes. The molecules are connected via extensive methoxy–phenyl C—H...π interactions. A weak C—H...O hydrogen-bonding network also exists between methoxy O atoms and aromatic or methoxy H atoms.

lcsh:Chemistrylcsh:QD1-999Acta Crystallographica Section E
researchProduct

Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution

2018

Iron oxide (Fe3O4) and iron oxide/activated carbon (Fe3O4/AC) were fabricated by co-precipitation method for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution in batch mode. These nanoparticles were characterized by BET, FTIR, XRD, SEM/TEM and VSM. The optimum conditions for the removal of ions were pH = 2 for Cr(VI) and 6 for Cu(II) and Cd(II), initial metal ion concentration = 50 mg L−1, nanoparticle dose = 50 mg/10 mL, temperature = 25 ± 1 °C, shaking speed = 180 rpm and contact time = 3 h. The equilibrium data of ions sorption were well described by Langmuir, Freundlich, Redlich-Peterson and Intraparticle Diffusion model. The R2 values obtained by Langmuir model were h…

Langmuirlcsh:Management. Industrial managementXRDActivated carbonGeography Planning and Development116 Chemical sciencesIron oxide215 Chemical engineering02 engineering and technology010501 environmental sciences01 natural scienceschemistry.chemical_compoundsymbols.namesakeAdsorptionINDUSTRIAL WASTE-WATERDesorptionEFFICIENT ADSORBENTSmedicinerautaoksiditFreundlich equationiron oxide nanoparticleta1160105 earth and related environmental sciencesWater Science and TechnologyAqueous solutionMODIFIED MAGNETIC NANOPARTICLESpHCHROMIUM VI REMOVALiron oxide nanoparticlesLangmuir adsorption model021001 nanoscience & nanotechnologyNANO-PARTICLESchemistrylcsh:HD28-70OXIDE COMPOSITEaktiivihiiliCOPPER IONSsymbolsTEMLEAD(II) REMOVALnanohiukkasetHEXAVALENT CHROMIUM0210 nano-technologyActivated carbonmedicine.drugNuclear chemistry
researchProduct

Room-temperature plasma-enhanced atomic layer deposition of ZnO: Film growth dependence on the PEALD reactor configuration

2017

Room-temperature plasma-enhanced atomic layer deposition (PEALD) of ZnO was studied by depositing the films using diethylzinc and O2 plasma from inductively-coupled plasma (ICP) and capacitively-coupled plasma (CCP) plasma source configurations. The CCP-PEALD was operated using both remote and direct plasma. It was observed that the films deposited by means of remote ICP and CCP were all highly oxygen rich, independently on plasma operation parameters, but impurity (H, C) contents could be reduced by increasing plasma pulse time and applied power. With the direct CCP-PEALD the film composition was closer to stoichiometric, and film crystallinity was enhanced. The ZnO film growth was observe…

Materials scienceSiliconAnalytical chemistrychemistry.chemical_element02 engineering and technology01 natural sciencescapacitively-coupled plasmaAtomic layer depositionCrystallinitysinkkioksidiImpurity0103 physical sciencesMaterials ChemistryCapacitively coupled plasmata116Plasma processingplasma-enhanced atomic layer deposition010302 applied physicsta114zinc oxideSurfaces and InterfacesGeneral ChemistryPlasma021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and Filmsinductively-coupled plasmachemistryInductively coupled plasma0210 nano-technologySurface and Coatings Technology
researchProduct

Metal-bound Nitrate Anion as an Acceptor for Halogen Bonds in mono-Halopyridine-Copper(II) nitrate Complexes

2019

Fifteen n-halopyridine-Cu(NO3)2 complexes (n = 2, 3, 4) obtained from two different solvents, acetonitrile and ethanol, are investigated for C–X···O–N halogen bonds (XBs) in the solid state by single and powder X-ray diffraction. The nitrate anions bind copper(II) via anisobidentate modes and one of three oxygens act as an XB acceptor to halogens on the core pyridine rings. The N-metal coordination activates the electron-deficient π-system and triggers even C2- and C4-chlorines in the corresponding [Cu(2-chloropyridine)2(NO3)2] and [Cu(4-chloropyridine)2(NO3)2(ACN)] complexes to form short C–Cl2/Cl4···O–N halogen bonds. Notably, the C2–Cl2···O–N XBs with a normalized XB distance parameter (…

Ethanol010405 organic chemistryhalogen bondsSolid-stateNitrate anionGeneral Chemistry010402 general chemistryCondensed Matter Physics01 natural sciencesAcceptor3. Good health0104 chemical sciencesMetalchemistry.chemical_compoundchemistryvisual_artPolymer chemistryHalogenCopper(II) nitratevisual_art.visual_art_mediumGeneral Materials ScienceAcetonitrile
researchProduct

Novel lithocholaphanes: Syntheses, NMR, MS, and molecular modeling studies

2007

Abstract Novel head-to-head lithocholaphanes 6 and 11 have been synthesized via precursors 1 – 5 and 7 – 10 with overall good yields, and characterized by 1 H, 13 C, and 15 N NMR spectroscopy, ESI-TOF mass spectrometry, thermal analysis, and molecular modeling. In addition, the binding abilities of 6 and 11 towards alkali metal cations have been investigated via competitive complexation studies using equimolar mixtures of Li + , Na + , K + , and Rb + -cations, and cholaphanes 6 and 11 . The formation of cation–cholaphane adducts was detected by ESI-TOF mass spectrometry. The trends in these comparative binding studies are nicely reproduced theoretically with PM3 energetically optimized stru…

Coordination sphereMolecular modelChemistryOrganic ChemistryAnalytical chemistrychemistry.chemical_elementNuclear magnetic resonance spectroscopyAlkali metalAnalytical ChemistryRubidiumAdductInorganic ChemistryCrystallographyMoietyLithiumSpectroscopyJournal of Molecular Structure
researchProduct

Structural Modifications of Rb<sub>3</sub>RE(PO<sub>4</sub>)<sub>2</sub> Phases (RE = La, Gd, Y)

2001

CrystallographyMaterials scienceMechanics of MaterialsRietveld refinementMechanical EngineeringGeneral Materials ScienceCondensed Matter PhysicsMaterials Science Forum
researchProduct

Studies of Nature of Uncommon Bifurcated I–I···(I–M) Metal-Involving Noncovalent Interaction in Palladium(II) and Platinum(II) Isocyanide Cocrystals

2021

Two isostructural trans-[MI2(CNXyl)2]·I2 (M = Pd or Pt; CNXyl = 2,6-dimethylphenyl isocyanide) metallopolymeric cocrystals containing uncommon bifurcated iodine···(metal–iodide) contact were obtained. In addition to classical halogen bonding, single-crystal X-ray diffraction analysis revealed a rare type of metal-involved stabilizing contact in both cocrystals. The nature of the noncovalent contact was studied computationally (via DFT, electrostatic surface potential, electron localization function, quantum theory of atoms in molecules, and noncovalent interactions plot methods). Studies confirmed that the I···I halogen bond is the strongest noncovalent interaction in the systems, followed …

chemistry.chemical_classificationplatinaHalogen bondhalogeenit010405 organic chemistryChemistryIsocyanideAtoms in moleculeskompleksiyhdisteet010402 general chemistrypalladium01 natural sciencesCocrystalElectron localization function0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographykemialliset sidoksetNucleophileNon-covalent interactionsPhysical and Theoretical ChemistryIsostructuralmetallit
researchProduct

Physicochemical Properties of New Dicationic Ether-Functionalized Low Melting Point Ammonium Salts

2010

Eleven new and one previously known but insufficiently characterized dicationic quaternary ammonium (QA) salts were synthesized and characterized. They contain an ethoxy ethyl group either in a side chain and/or as spacer of the diammonium cation and have bromide, hexafluorophosphate (PF6–), bis(trifluoromethanesulfonyl)imide (TFSI), or trifluoromethanesulfonate (TFMS) as an anion. 1H and 13C techniques, mass spectrometry, and elemental analysis together with X-ray diffraction and thermoanalytical methods were used for their characterization both in the liquid and solid state. In addition, residual water content and viscosity measurements were made for the two room temperature ionic liquid…

chemistry.chemical_compoundCrystallinitychemistryBromideHexafluorophosphateInorganic chemistryIonic liquidSide chainPhysical chemistryGeneral ChemistryCrystal structureTrifluoromethanesulfonatePowder diffractionAustralian Journal of Chemistry
researchProduct

Characterization of ALD grown Ti x Al y N and Ti x Al y C thin films

2017

Abstract Atomic layer deposition (ALD) was used to grow Ti x Al y N and Ti x Al y C thin films using trimethylaluminum (TMA), titanium tetrachloride and ammonia as precursors. Deposition temperature was varied between 325 °C and 500 °C. Films were also annealed in vacuum and N 2 -atmosphere at 600–1000 °C. Wide range of characterization methods was used including time-of-flight elastic recoil detection analysis (ToF-ERDA), X-ray diffractometry (XRD), X-ray reflectometry (XRR), Raman spectroscopy, ellipsometry, helium ion microscopy (HIM), atomic force microscopy (AFM) and 4-point probe measurement for resistivity. Deposited films were roughly 100 nm thick and contained mainly desired elemen…

Nuclear and High Energy PhysicsMaterials scienceHydrogen020209 energyAnalytical chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyElastic recoil detectionX-ray reflectivitysymbols.namesakeAtomic layer depositionchemistry.chemical_compoundchemistryEllipsometry0202 electrical engineering electronic engineering information engineeringsymbolsTitanium tetrachlorideThin film0210 nano-technologyRaman spectroscopyInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Halogen bonds in 2,5-dihalopyridine-copper(II) chloride complexes

2018

Ten coordination complexes obtained through a facile reaction between 2,5-dihalopyridines and copper(II) chloride (CuCl2) are characterized using single crystal X-ray diffraction. Two series of dihalopyridine complexes based on 2-chloro-5-X-pyridine and 2-bromo-5-X-pyridine (X = F, Cl, Br and I) were prepared to analyze the C–X2/X5⋯Cl–Cu halogen bonds (XB). The influence of X2- and X5-substituents on the respective interactions was examined by comparing them to the X2/X3⋯Cl–Cu XBs found in mono-substituted halopyridine complexes, (n-X-pyridine)2·CuCl2 (n = 2, 3 and X = Cl, Br and I). Varying the X5-halogens in (2,5-dihalopyridine)2·CuCl2, the C5–X5⋯Cl–Cu XBs follow the order F5 1 and they c…

010405 organic chemistryChemistrySubstituentchemistry.chemical_elementGeneral Chemistrykompleksiyhdisteet010402 general chemistryCondensed Matter Physics01 natural sciencesChlorideCopperchemical bonds0104 chemical scienceschemistry.chemical_compoundCrystallographykemialliset sidoksetHalogenmedicineCopper(II) chlorideGeneral Materials Sciencecoordination complexesPolarization (electrochemistry)Single crystalta116medicine.drugCrystEngComm
researchProduct

Room-Temperature Magnetic Bistability in a Salt of Organic Radical Ions

2021

International audience; Cocrystallization of 7,7′,8,8′-tetracyanoquinodimethane radical anion (TCNQ −•) and 3-methylpyridinium-1,2,3,5dithiadiazolyl radical cation (3-MepyDTDA +•) afforded isostructural acetonitrile (MeCN) or propionitrile (EtCN) solvates containing cofacial π dimers of homologous components. Loss of lattice solvent from the diamagnetic solvates above 366 K affords a high-temperature paramagnetic phase containing discrete TCNQ −• and weakly bound π dimers of 3-MepyDTDA +• , as evidenced by X-ray diffraction methods and magnetic susceptibility measurements. Below 268 K, a first-order phase transition occurs, leading to a low-temperature diamagnetic phase with TCNQ −• σ dimer…

magneettiset ominaisuudetDimer02 engineering and technologyGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry010402 general chemistry021001 nanoscience & nanotechnologyvapaat radikaalit01 natural sciencesBiochemistryTetracyanoquinodimethaneMagnetic susceptibilityCatalysis0104 chemical scienceschemistry.chemical_compoundParamagnetismCrystallographyColloid and Surface ChemistryRadical ionchemistryDiamagnetismPropionitrileIsostructural0210 nano-technologyorgaaniset yhdisteet
researchProduct

Synthesis, Characterization, Thermal and Antimicrobial studies of N-substituted Sulfanilamide derivatives

2014

Abstract Four sulfanilamide derivatives N -[4-(phenylsulfamoyl)phenyl]acetamide (1), 4-amino- N -phenylbenzenesulfonamide (2), N -[4-(phenylsulfamoyl)phenyl]benzamide (3) and N -{4-[(3-chlorophenyl)sulfamoyl]phenylbenzamide (4) were synthesized and characterized by Infra-Red (IR), Nuclear Magnetic Resonance (NMR) and UV–visible (UV–Vis) spectra. Also Liquid Chromatographic (LCMS) and High Resolution Mass Spectrometric (HRMS) methods were used. Crystal structures of 1–4 were determined by single crystal X-ray diffraction (XRD) and their conformational and hydrogen bond (HB) network properties were examined with survey of the literature data. Compounds 1 and 2 crystallize in the same orthorho…

CARBONIC-ANHYDRASE INHIBITORSStereochemistryCrystal structureAntimicrobial activitySOLUBILITYTriclinic crystal systemAnalytical ChemistryInorganic ChemistrySynthesischemistry.chemical_compoundDESIGNSulfanilamidesmedicineSUBLIMATIONCRYSTAL-STRUCTUREThermal analysista116SpectroscopySULFONAMIDE DERIVATIVESHydrogen bondCrystal structureOrganic ChemistryThermal decompositionSulfanilamideX-ray diffractionCrystallographySOLVATIONchemistryACIDOrthorhombic crystal systemAcetamidemedicine.drugMonoclinic crystal systemJournal of Molecular Structure
researchProduct

Unraveling the packing pattern leading to gelation using SS NMR and X-ray diffraction: direct observation of the evolution of self-assembled fibers

2010

A detailed understanding of the mode of packing patterns that leads to the gelation of low molecular mass gelators derived from bile acid esters was carried out using solid state NMR along with complementary techniques such as powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and polarizing optical microscopy (POM). Solid state 13C{1H} cross polarization (CP) magic angle spinning (MAS) NMR of the low molecular mass gel in its native state was recorded for the first time. A close resemblance in the packing patterns of the gel, xerogel and bulk solid states was revealed upon comparing their 13C{1H}CPMAS NMR spectral pattern. A doublet r…

NMR spectra databaseCrystallographyDifferential scanning calorimetrySolid-state nuclear magnetic resonanceChemistryX-ray crystallographyMagic angle spinningResonanceGeneral ChemistrySinglet stateCondensed Matter PhysicsPowder diffractionSoft Matter
researchProduct

Microwave assisted synthesis and solid-state characterization of lithocholyl amides of isomeric aminopyridines

2011

Microwave (MW) assisted synthesis and solid state structural characterizations of novel lithocholyl amides of 2-, 3-, and 4-aminopyridine are reported. It is shown that the MW technique is a proper method in the preparation of N-lithocholyl amides of isomeric aminopyridines. It offers many advantages compared to conventional heating. The molecular and crystal structures as well as the polymorphic and hydrated forms of prepared conjugates with their thermodynamic stabilities have been characterized by means of high resolution liquid- and solid-state NMR spectroscopy, single crystal and powder X-ray diffraction, and thermogravimetric analysis. Owing to the many biological functions of bile ac…

Thermogravimetric analysisMagnetic Resonance SpectroscopyClinical BiochemistryAminopyridinesCrystal structureBiochemistryCrystalEndocrinologyIsomerismX-Ray DiffractionOrganic chemistryMicrowavesMolecular Biologyta116AminopyridinesPharmacologyChemistryOrganic ChemistryNuclear magnetic resonance spectroscopyAmidesSolid-state nuclear magnetic resonanceX-ray crystallographyThermogravimetryLithocholic AcidCrystallizationSingle crystalSteroids
researchProduct

Ultrasound-assisted MnO2 catalyzed homolysis of peracetic acid for phenol degradation: The assessment of process chemistry and kinetics

2013

Abstract The combination of peracetic acid (PAA) and heterogeneous catalyst (MnO 2 ) was used for the degradation of phenol in an aqueous solution in the presence of ultrasound irradiation (US). As a relevant source of free radicals (e.g. OH), peracetic acid was comprehensively studied by means of electron spin resonance (ESR) spin trapping (ST) techniques with the subsequent identification of free radicals by simulation based fitting (SBF) technique. The radical reaction mechanism, where hydroxyl radical was a primary product of O O bond rupture of PAA, was established taking into account radical reactions, occurring during sonolysis. The potential barriers and the reaction heat were deter…

General Chemical EngineeringRadicalwaterBiophysicsmechanismPhotochemistryIndustrial and Manufacturing EngineeringCatalysisSonochemistrychemistry.chemical_compoundPeracetic acidfree-radicalsintermediateEnvironmental ChemistryPhenolLaboratorium voor Plantenfysiologieta116decompositionSpin trappingChemistryaqueous-solutionsGeneral ChemistrydestructionHomolysisBiofysicasystemsHydroxyl radicalwet peroxide oxidationsonochemistryLaboratory of Plant PhysiologyChemical Engineering Journal
researchProduct

Nonporous Organic Solids Capable of Dynamically Resolving Mixtures of Diiodoperfluoroalkanes

2009

Halogen bonding has increasingly facilitated the assembly of diverse host-guest solids. Here, we show that a well-known class of organic salts, bis(trimethylammonium) alkane diiodides, can reversibly encapsulate α,ω-diiodoperfluoroalkanes (DIPFAs) through intermolecular interactions between the host's I – anions and the guest's terminal iodine substituents. The process is highly selective for the fluorocarbon that forms an I – ···I(CF 2 ) m I···I – superanion that is matched in length to the chosen dication. DIPFAs that are 2 to 12 carbons in length (common industrial intermediates) can thereby be isolated from mixtures by means of crystallization from solution upon addition of the dissolv…

Alkanechemistry.chemical_classificationMultidisciplinaryHalogen bondChemistryInorganic chemistryIonic bondingCrystal structurelaw.inventionInclusion compoundDicationchemistry.chemical_compoundlawMoleculeCrystallizationScience
researchProduct

The influence of ultrasound on the RuI3-catalyzed oxidation of phenol: Catalyst study and experimental design

2009

Abstract The influence of ultrasound at 24 kHz on the heterogeneous aqueous oxidation of phenol over RuI3 with hydrogen peroxide (H2O2) was studied isothermally at 298 K. Effect of ultrasound irradiation on catalytic properties and performance of RuI3 has been studied in details by means of scanning electron microscopy (SEM), X-ray powder diffraction (XRD), dispersion analyzer and a surface analyzer. Turn over frequency of the catalyst was also calculated. In this work, experimental design methodology was applied to optimize the degradation of phenol in aqueous solution, while minimizing an excessive consumption of chemical reagents. The independent variables considered were the catalyst lo…

Aqueous solutionStereochemistryChemistryProcess Chemistry and TechnologyInorganic chemistryHeterogeneous catalysisCatalysisCatalysischemistry.chemical_compoundCatalytic oxidationReagentPhenolLeaching (metallurgy)Hydrogen peroxideGeneral Environmental ScienceApplied Catalysis B: Environmental
researchProduct

Synthesis, characterization and thermal behavior of nine new -type quaternary ammonium tetrafluoroborate or hexafluorophosphate salts prepared by met…

2008

Abstract Nine new quaternary ammonium tetrafluoroborate or hexafluoroborate salts were prepared from analogous bromide or chloride salts using anion exchange reaction in which the corresponding bromide or chloride salt was treated with HBF4 or HPF6 acid in aqueous solutions. The characterizations were performed by 1H NMR and 13C NMR spectroscopy as well as by elemental analysis. The single crystals of three tetrafluoroborate and two hexafluorophosphate salts were obtained by slow evaporation from a methanol/ethyl acetate solution and the crystal structures were determined by X-ray single crystal diffraction. Four of the compounds crystallized in the orthorhombic and one in the monoclinic cr…

Aqueous solutionTetrafluoroborateOrganic ChemistryInorganic chemistryHalideCrystal structureChlorideAnalytical ChemistryInorganic Chemistrychemistry.chemical_compoundchemistryBromideHexafluorophosphatemedicineSpectroscopymedicine.drugMonoclinic crystal systemJournal of Molecular Structure
researchProduct

Acetic acid leaching of neodymium magnets and iron separation by simple oxidative precipitation

2022

Neodymium-iron-boron (NdFeB) has become the most prominent permanent magnet alloy, with a wide variety of applications and an ever-increasing demand. Their recycling is important for securing the supply of critical raw materials used in their manufacturing. The use of organic acids such as acetic acid has been of recent interest for the recycling of waste NdFeB magnets. Despite achieving good leaching efficiencies, the published literature has not properly investigated the effects of key factors influencing the acetic acid leaching process and their respective interactions, which has lead to conflicting findings as to what conditions are optimal. The present work goes to show that no such o…

spent NdFeB magnetetikkahappocritical raw materialmetallituudelleenkäyttöharvinaiset maametallitiron precipitationREE [rare earth element]acetic acid leachingkierrätys
researchProduct

Charge-Assisted Halogen Bonding in an Ionic Cavity of a Coordination Cage Based on a Copper(I) Iodide Cluster.

2023

The design of molecular containers capable of selective binding of specific guest molecules presents an interesting synthetic challenge in supramolecular chemistry. Here, we report the synthesis and structure of a coordination cage assembled from Cu3I4– clusters and tripodal cationic N-donor ligands. Owing to the localized permanent charges in the ligand core the cage binds iodide anions in specific regions within the cage by ionic interactions. This allows the selective binding of bromomethanes as secondary guest species within cage promoted by halogen bonding, which was confirmed by single crystal X-ray diffraction. peerReviewed

jodikemialliset sidoksetkoordinaatiohäkithalogeenitsupramolekulaarinen kemiacluster compoundshalogen bondkupariGeneral Medicinecoordination cageGeneral ChemistryCatalysishost-guest systemsAngewandte Chemie (International ed. in English)
researchProduct

Phase-selective low molecular weight organogelators derived from allylated D-mannose

2022

In the last decades, synthesis and design of low molecular weight organogelators has gained increasing attention due to their versatile use in, for example, cosmetics, biomedicine and oil spill remediation. In this work, three potential gelators have been prepared from allylated d-mannose. Both the gelators and the corresponding gels formed were thoroughly characterized by crystallography, FTIR spectroscopy, SEM, rheometry and NMR spectroscopy, in solution and in solid state. The results showed that two of the compounds phase-selectively form gels with hydrocarbon solvents. The most promising gelator compound is alkene terminated, with the unsaturated end functionality not critical for gel …

monosakkariditgeelitD-mannoosiLMWOGphase selectivityOrganic ChemistryinfrapunaspektroskopiaGeneral MedicineAlkenesgelskidetiedeBiochemistryAnalytical ChemistryMolecular WeightPetroleum PollutionhyötykäyttöNMR-spektroskopiahiilihydraatitGelsMannoseD-mannosesolid state NMR spectroscop
researchProduct

Bile acid–cysteamine conjugates: Structural properties, gelation, and toxicity evaluation

2011

Abstract Design, synthesis, and characterization of six novel bile acid–cysteamine conjugates together with investigation of their structural studies, gelation properties, and preliminary toxicity evaluation, are reported. Solid state properties of selected compounds were studied by means of X-ray diffraction and 13C CPMAS NMR spectroscopy. N-(2-thioethyl)-3α,7α,12α-trihydroxy-5β-cholan-24-amide was shown to exhibit (pseudo)polymorphism, and a single crystal structure of its non-stoichiometric hydrate is reported herein. Cholyl and dehydrocholyl derivatives bearing three functionalities in their steroidal backbone were shown to undergo self-assembly leading to gelation in certain organic so…

BALB 3T3 CellsMagnetic Resonance Spectroscopymedicine.drug_classCysteamineClinical BiochemistryCholic AcidBiochemistryBile Acids and SaltsInhibitory Concentration 50Micechemistry.chemical_compoundEndocrinologyX-Ray DiffractionmedicineAnimalsOrganic chemistryta116Molecular BiologyPharmacologyBile acidUrsodeoxycholic AcidOrganic ChemistryHydrogen BondingNuclear magnetic resonance spectroscopyFibroblastsAmidesCombinatorial chemistrychemistrySolid-state nuclear magnetic resonancePolymorphism (materials science)SolventsLithocholic AcidCysteamineHydrateSingle crystalDeoxycholic AcidConjugateSteroids
researchProduct

The conformational polymorphism and weak interactions in solid state structures of ten new monomeric and dimeric substituted dibenzyldimethylammonium…

2009

In this study, ten new dibenzyldimethyl/ethyl ammonium chloridopalladate(II) compounds with five different cations and two anions have been synthesized and a simple method for a synthesis, in which hydrochloric acid solutions are used, has been described. Furthermore, twelve structures including two polymorphs have been obtained from hydrochloric and methanol/acetonitrile solutions. The anion–cation and cation–cation interactions of the synthesized compounds have been studied mainly by means of single X-ray diffraction in order to study the effects of varying either the anion or the cations in these QA2PdCl4 and QA2Pd2Cl6 salts. The results indicate that the effects of intermolecular cation…

ChemistryStereochemistryIntermolecular forceHydrochloric acidGeneral ChemistryCondensed Matter PhysicsIonCrystallographychemistry.chemical_compoundMonomerPolymorphism (materials science)General Materials ScienceAmmoniumMethanolAcetonitrileCrystEngComm
researchProduct

N,N-Di-n-octyl-N,N-dimethyl and N,N-di-n-nonyl-N,N-dimethyl ammonium cholates: 13C and 15N CPMAS NMR, powder X-ray diffraction and thermoanalytical c…

2009

Abstract N,N-Di-n-octyl-N,N-dimethyl cholate (1) and N,N-di-n-nonyl-N,N-dimethyl ammonium cholate (2) have been prepared by crystallization from equimolar mixtures of sodium cholate and quaternary N,N-di-n-alkyl-N,N-dimethyl (n-octyl or n-nonyl) ammonium bromides. The formed crystalline materials have been structurally characterized by 13C and 15N cross polarization magic angle spinning (CPMAS) NMR, powder X-ray diffraction (PXRD) and thermoanalytical (TGA/DTA and DSC) methods and compared with each other. Powder X-ray diffraction patterns of 1 and 2 reveal clear similarities. Combined with the thermoanalytical data of these structures an existence of two hydrated polymorphs (most probably …

Organic ChemistryInorganic chemistryIonic bondingAnalytical Chemistrylaw.inventionInorganic ChemistryCrystallographychemistry.chemical_compoundchemistryPolymorphism (materials science)lawX-ray crystallographyMagic angle spinningAmmoniumCrystallizationSodium CholateSpectroscopyPowder diffractionJournal of Molecular Structure
researchProduct

Tansy fruit mediated greener synthesis of silver and gold nanoparticles

2010

Abstract In this paper we have reported the green synthesis of silver (AgNPs) and gold (AuNPs) nanoparticles by reduction of silver nitrate and chloroauric acid solutions, respectively, using fruit extract of Tanacetum vulgare ; commonly found plant in Finland. The process for the synthesis of AgNPs and AuNPs is rapid, novel and ecofriendly. Formation of the AgNPs and AuNPs were confirmed by surface plasmon spectra using UV–Vis spectrophotometer and absorbance peaks at 452 and 546 nm. Different tansy fruit extract concentration (TFE), silver and gold ion concentration, temperature and contact times were experimented in the synthesis of AgNPs and AuNPs. The properties of prepared nanoparticl…

ChemistryAnalytical chemistryNanoparticleBioengineeringApplied Microbiology and BiotechnologyBiochemistryAbsorbancechemistry.chemical_compoundSilver nitrateColloidal goldChloroauric acidZeta potentialFourier transform infrared spectroscopyMetal nanoparticlesNuclear chemistryProcess Biochemistry
researchProduct

Bile acid amidoalcohols: simple organogelators.

2003

Simple bile acid amide synthesis of lithocholic and deoxycholic acids with 2-aminoethanol and 3-aminopropanol are reported. The structural properties of these amides were examined by NMR spectroscopic, ESI-TOF mass spectral, and X-ray crystallographic methods. The gelation properties of these amides in common organic solvents and in three different water solutions were also investigated using Tyndall effect, SEM, TEM, and optical microscopy. 2-Hydroxyethylamides were found to be effective gelators in chlorinated organic solvents and 3-hydroxypropylamides in aromatic solvents. Both derivatives thicken neutral and acidic water solutions.

Lithocholic acidTyndall effectmedicine.drug_classSurface PropertiesBiomedical EngineeringBiophysicsMolecular ConformationAlcoholBile Acids and SaltsPropanolamineschemistry.chemical_compoundPropanolaminesAmideElectrochemistrymedicineOrganic chemistryOrganic ChemicalsBile acidDeoxycholic acidEthanolaminesGeneral MedicinechemistryEthanolaminesLithocholic AcidGelsBiotechnologyDeoxycholic AcidBiosensorsbioelectronics
researchProduct

Properties of new low melting point quaternary ammonium salts with bis(trifluoromethanesulfonyl)imide anion

2010

Eight new monocationic quaternary ammonium (QA) salts with the bis(trifluoromethanesulfonyl)imide (TFSI) anion were prepared by metathesis using our previously reported QA halides as precursors. New salts were characterized both in liquid and solid state using 1 H and 13 C NMR techniques, mass spectroscopy and elemental analysis together with X-ray diffraction and thermoanalytical methods. In addition, residual water content, viscosity and conductivity measurements were made for three of the roomtemperature ionic liquids (RTILs). The crystal structures of three compounds were determined by X-ray single crystal diffraction. Powder diffraction was used to study the crystallinity of the solid …

ChemistryOrganic ChemistryInorganic chemistryHalideCrystal structureAnalytical ChemistryFreezing pointInorganic ChemistryCrystallinitychemistry.chemical_compoundX-ray crystallographyIonic liquidPhysical chemistryThermal analysisSpectroscopyPowder diffractionJournal of Molecular Structure
researchProduct

Phosphotungstic acid (PTA) in the synthesis of 3D CdS superstructures by diffusion assisted hydrothermal method

2015

Abstract In this study, the synthesis of cadmium sulfide (CdS) microstructures by gas diffusion assisted hydrothermal method using phosphotungstic acid (PTA) is reported. The as-synthesized products were characterized by Fourier transform infrared (FTIR), powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effects of PTA dose, thioacetamide amount, time and temperature on the morphology of obtained particles have been studied. In this process, PTA ion host stabilizes the CdS particles against aggregation and thioacetamide plays two roles, being at the same time a sulfur source and a capping ligand. Based on the performed analyses it seems that the thioacetamide is mor…

electron microscopyChemistryPrecipitation (chemistry)Scanning electron microscopeGeneral Chemical EngineeringDiffusionmicrostructurediffusionInorganic chemistryNucleationsemiconductorsHydrothermal circulationCadmium sulfidechemistry.chemical_compoundChemical engineeringMechanics of MaterialsPhosphotungstic acidFourier transform infrared spectroscopyta215Advanced Powder Technology
researchProduct

Towards controlling PCDD/F production in a multi-fuel fired BFB boiler using two sulfur addition strategies

2014

Abstract PCDD/F abatement strategies – sulfur pellet addition and peat co-combustion – were tested for a BFB boiler facility utilizing SRF-bark-sludge as fuel. In this paper chemical and physical analyses of electrostatic precipitator (ESP) fly ashes were used to explain the differences in the performance of these strategies. These analyses revealed a difference between the coarse and fine fly ashes collected in the ESP. Chemical analysis of the fine fly ashes revealed high concentration of easily volatilized elements while the SEM micrographs showed that fine ash are composed of clusters of spherical particles, thereby leading to a conclusion that fine ashes were originally in a gas phase …

spectroscopybubbling fluidized bed boilersChemistryGeneral Chemical EngineeringOrganic ChemistryemissionsEnergy Engineering and Power Technologychemistry.chemical_elementMineralogyElectrostatic precipitatorMole fractionCopperSulfurXANESCatalysisFuel TechnologyEnvironmental chemistryFly ashcopperPelletsulfursPCDD/Fta215ta116Fuel
researchProduct

Systematic study of physicochemical properties of a homologous series of aminobisphosphonates

2012

Aminobisphosphonates, e.g., alendronate and neridronate, are a well known class of molecules used as drugs for various bone diseases. Although these molecules have been available for decades, a detailed understanding of their most important physicochemical properties under comparable conditions is lacking. In this study, ten aminobisphosphonates, H2N(CH2)nC(OH)[P(O)(OH)2]2, in which n = 2–5, 7–11 and 15 have been synthesized. Their aqueous solubility as a function of temperature and pH, pKa-values, thermal stability, IR absorptions, and NMR spectral data for bothliquid (1H, 13C, 31P-NMR) and solid state (13C, 15N and 31P-CPMAS NMR) were determined. peerReviewed

fysikaaliskemialliset ominaisuudetvesiliuokoisuustermoanalyysibisfosfonaattiaqueous solubilitypKahappovakiophysicochemical propertiesbisfosfonaatit
researchProduct

High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition

2018

SuperconductivityMaterials sciencebusiness.industryInfraredMetals and Alloys02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesTitanium nitridePulsed laser depositionchemistry.chemical_compoundQuality (physics)chemistry0103 physical sciencesMaterials ChemistryCeramics and CompositesOptoelectronicsElectrical and Electronic EngineeringThin film010306 general physics0210 nano-technologybusinessSuperconductor Science and Technology
researchProduct

"Identification of mixed bromidochloridotellurate anions in disordered crystal structures of (bdmim)2[TeX2Y4] (X, Y = Br, Cl; bdmim = 1-butyl-2,3-dim…

2013

Abstract The discrete mixed [TeBrxCl6−x]2− anions in their disordered crystal structures have been identified by using the phases prepared by the reaction of 1-butyl-2,3-dimethylimidazolium halogenides (bdmim)X with tellurium tetrahalogenides TeX4 (X = Cl, Br) as examples. Homoleptic (bdmim)2[TeX6] [X = Cl (1), Br (2)] and mixed (bdmim)2[TeBr2Cl4] (3), and (bdmim)2[TeBr4Cl2] (4) are formed depending on the choice of the reagents, and their crystal structures have been determined by single-crystal X-ray diffraction. The coordination environments of tellurium in all hexahalogenidotellurates are almost octahedral. Because of the crystallographic disorder, the mixed [TeBr2Cl4]2− and [TeBr4Cl2]2…

AnionsBromidesModels MolecularMagnetic Resonance SpectroscopyAb initiochemistry.chemical_elementCrystal structureCrystallography X-RaySpectrum Analysis RamanAnalytical Chemistrysymbols.namesakechemistry.chemical_compoundChloridesX-Ray DiffractionHomolepticInstrumentationta116SpectroscopyMolecular StructureChemistryImidazolesAtomic and Molecular Physics and OpticsCrystallographyOctahedronsymbolsTellurium tetrachlorideQuantum TheoryTelluriumRaman spectroscopyTelluriumPowder diffractionSpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
researchProduct

High-quality superconducting titanium nitride thin film growth using infra-red pulsed laser deposition

2018

Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ~17 μΩ cm and residual resist…

titaanielemental analysisalkuaineanalyysiohutkalvotpulsed laser deposition (PLD)titanium nitridesuprajohteet
researchProduct

3,4,5-Trimethoxy-4'-methylbiphenyl

2013

In the title compound, C16H18O3, the dihedral angle between the benzene rings is 33.4 (2)°. In the crystal, mol­ecules are packed in a zigzag arrangement along the b-axis and are inter­connected via weak C—H⋯O hydrogen bonds, and C—H⋯π inter­actions involving the meth­oxy groups and the benzene rings of neighbouring molecules.

röntgendiffraktiocrystal structure010405 organic chemistryHydrogen bonddendrimeeri prekursoriGeneral ChemistrykiderakenneDihedral angle010402 general chemistryCondensed Matter Physics01 natural sciencesOrganic Papers3. Good health0104 chemical sciencesX-ray diffractionCrystalchemistry.chemical_compoundCrystallographychemistryZigzagdendrimer precursorMoleculeGeneral Materials ScienceBenzeneta116Acta Crystallographica Section E-Structure Reports Online
researchProduct

Poly[[myy-N,N'-bis(2-hydroxyethyl)-N,N,N',N'-tetramethylpropane-1,3-diaminium-kappa2O:O']tetra-myy-bromido-dibromidodimanganese(II)]

2012

The asymmetric unit of the title three-dimensional coordination polymer, [Mn2Br6(C11H28N2O2)]n, consists of one MnII cation, half of a dicationic N,N0 -bis(2-hydroxyethyl)- N,N,N0 ,N0 -tetramethylpropane-1,3-diaminium ligand (L) (the other half being generated by a twofold rotation axis), and three bromide ions. The MnII cation is coordinated by a single L ligand via the hydroxy O atom and by five bromide ions, resulting in a distorted octahedral MnBr5O coordination geometry. Four of the bromide ions are bridging to two adjacent MnII atoms, thereby forming polymeric chains along the a and b axes. The L units act as links between neighbouring Mn—(-Br)2—Mn chains, also forming a polymeric con…

röntgendiffraktiocrystal structurex-ray diffractionmetallo-orgaaninen verkkorakennekiderakennemetal-organic framework
researchProduct

3α-Hydroxy-N-(3-hydroxypropyl)-5β-cholan-24-amide

2009

The title compound, C27H47NO3, is a (3-hydroxypropyl)amide derivative of naturally occurring enantiopure lithocholic acid (3-hydroxy-5-cholan-24-oic acid). The molecule contains four fused rings: three six-membered rings in chair conformations and one five-membered ring in a half-chair form. The two terminal six-membered rings are cis-fused, while other rings are trans-fused. The structure contains an intramolecular O—H O hydrogen bond and a similar hydrogen-bond framework to the corresponding deoxycholic and chenodeoxycholic acid derivatives. Intermolecular O— H O and N—H O interactions are also present in the crystal. This compound seems to have at least two polymorphic forms from a compa…

Lithocholic acidStereochemistryHydrogen bondGeneral ChemistryCondensed Matter PhysicsRing (chemistry)BioinformaticsOrganic Papersstructural chemistrychemistry.chemical_compoundchemistryAmideGeneral Materials Sciencerakennekemiasappihappojohdannainenbile acid derivativeActa Crystallographica Section E Structure Reports Online
researchProduct

Structural, Thermoanalytical and Molecular Modeling Studies on N-(3-hydroxypropyl) 3a,12a-Dihydroxy-5b-cholan-24-amide and Its Monohydrates

2007

The synthetic method for preparing N-(3-hydroxypropyl) 3 alpha,12 alpha-dihydroxy-5 beta-cholan-24-amide can lead to formation of at least three different crystal forms - an anhydrous compound and two monohydrates. The structural and thermal properties of these forms have been characterized by 13C-CP/MAS-NMR and IR spectroscopy, thermo- gravimetry, differential scanning calorimetry and by powder and single crystal x-ray crystallography. In addition, theoretical 13C-NMR chemical shift calculations were also performed for the anhydrous compound and for the first monohydrate, starting from single crystal structures and the structures of these species have now been verified. The first monohydra…

Models MolecularMagnetic Resonance Spectroscopysolid state structure.termoanalyysiPharmaceutical ScienceInfrared spectroscopy13C-CP/MAS-NMR spectroscopy13C-CP/MAS-NMR spektroskopiaFull Research PaperAnalytical ChemistryCrystallcsh:QD241-441Differential scanning calorimetrylcsh:Organic chemistryX-Ray DiffractionDrug Discoverykiinteän tilan rakenneSolid state structurePhysical and Theoretical ChemistrycrystallographyCarbon Isotopeskristallografiathermal Bile acidsCalorimetry Differential ScanningChemistryHydrogen bondOrganic ChemistryTemperatureWaterHydrogen BondingkidetiedeAmidesBile acidsCrystallographysappihapotChemistry (miscellaneous)X-ray crystallographyThermogravimetryAnhydrousCholanesMolecular MedicineOrthorhombic crystal systemSingle crystalthermal analysis
researchProduct

Separation of chelating agents as copper complexes by capillary zone electrophoresis using quaternary ammonium bromides as additives in N-methylforma…

2006

This study presents the use of quaternary ammonium bromides as additives in N-methylformamide (NMF) for the separation and quantification of chelating agents as copper complexes by capillary zone electrophoresis (CZE). The new quaternary ammonium bromides were synthesized in our laboratory and used for the first time for CZE applications performed in NMF media. The methods were developed and optimized for determination of six chelating agents (trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA), diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA), nitrilotriacetic acid (NTA) and trieth…

ChemistryInorganic chemistryNitrilotriacetic acidchemistry.chemical_elementEthylenediaminetetraacetic acidN-MethylformamideBiochemistryCopperAnalytical Chemistrychemistry.chemical_compoundCapillary electrophoresisBromideEnvironmental ChemistryChelationAmmoniumSpectroscopyAnalytica Chimica Acta
researchProduct

The Effect of Interferences on the Uptake of Heavy Metals by Sodium (iron) Titanates from Waste Water

2007

Sodium hexatitanate, sodium trititanate, sodium nonatitanate, and a new iron doped sodium nonatitanate were synthesized. Common interferences present in waste waters that hinder the removal of heavy metals by these ion exchangers were investigated. The presence of K+, Mg2+ and Ca2+ at 0.001-0.05 M concentration had minor effect on the amount of Pb2+, Cr3+, and Ni2+ uptake. EDTA on the other hand, interferes tremendously with the metal uptake. Both in ternary and in single system, the selectivity series is in the order: Pb2+>Cr3+>Ni2+. This order changed to Cr3+>Pb2+>Ni2+, in the presence of 0.001-0.1 M EDTA at pH 5.

inorganic chemicalsSodiumInorganic chemistrychemistry.chemical_elementHeavy metalsIonMetalchemistryWastewatervisual_artvisual_art.visual_art_mediumQualitative inorganic analysisTernary operationSelectivityJournal of Ion Exchange
researchProduct

Synthesis and characterization of novel bile-acid – heteroaryl conjugates with N-(2-aminoethyl)amido linker

2008

Abstract Four novel bile acid conjugates N-[2-([2,2′]-bithiophen-5-ylmethyl)aminoethyl]-3α-hydroxy-5β-cholan-24-amide (1), N-[2-([2,2′]-bithiophen-5-ylmethyl)aminoethyl]-3α,7α,12α-trihydroxy-5β-cholan-24-amide (2), N-[2-(1H-pyrrol-2-ylmethyl)aminoethyl]-3α-hydroxy-5β-cholan-24-amide (3), N-[2-(pyridin-2-ylmethyl)aminoethyl]-3α-hydroxy-5β-cholan-24-amide (4) have been synthesized in moderate to good yields, and their structures have been characterized by 1H, 13C, 13C DEPT-135, PFG 1H,13C HMQC, and PFG 1H,13C HMBC NMR spectra. Their molecular weights and elemental compositions have been determined by ESI-TOF mass spectrometry and elemental analyses. Crystal structure of 1 characterized with o…

Molecular massBile acidChemistryStereochemistrymedicine.drug_classOrganic ChemistryCrystal structureMass spectrometryAnalytical ChemistryInorganic ChemistryNMR spectra databasemedicineOrthorhombic crystal systemLinkerSpectroscopyConjugateJournal of Molecular Structure
researchProduct

ChemInform Abstract: X-Ray Powder Structure Determination and Thermal Behavior of a New Modification of Pb(II) Selenite.

2010

The crystal structure of a new polymorphic form of lead(II) selenite (PbSeO3) was solved directly from conventional X-ray powder diffraction data. Direct methods and Rietveld refinement techniques were used for the structure determination. The compound crystallizes in the monoclinic space group P21/c (no. 14) with cell dimensions a = 9.1587(1) A, b = 8.0902(1) A, c = 8.7932(1) A, β = 103.032(1)°, and V = 634.76(2) A3. The final refinement gave background excluded Rp = 6.22%, Rwp = 8.81%, and RB = 2.16% by using 45 structural and 15 profile parameters with 10 atoms in an asymmetric unit. The three-dimensional structure consists of 9-coordinated lead atoms, which are linked by three bidentate…

Phase transitionCrystallographyDenticitychemistryRietveld refinementX-raychemistry.chemical_elementMineralogyGeneral MedicineCrystal structurePowder diffractionSeleniumMonoclinic crystal systemChemInform
researchProduct

Towards Controlled Synthesis of Water-Soluble Gold Nanoclusters : Synthesis and Analysis

2019

Water-soluble gold nanoclusters with well-defined molecular structures and stability possess particular biophysical properties making them excellent candidates for biological applications as well as for fundamental spectroscopic studies. The currently existing synthetic protocols for atomically monodisperse thiolate-protected gold nanoclusters (AuMPCs) have been widely expanded with organothiolates, yet the direct synthesis reports for water-soluble AuMPCs are still deficient. Here, we demonstrate a wet-chemistry pH-controlled synthesis of two large water-soluble nanoclusters utilizing p-mercaptobenzoic acid (pMBA), affording different sizes of plasmonic AuMPCs on the preparative scale (∼7 …

synthesis02 engineering and technology010402 general chemistry01 natural scienceskultaQuantitative Biology::Cell BehaviorNanoclusterssynteesiPhysical and Theoretical Chemistryta116Condensed Matter::Quantum Gaseskemiallinen synteesita114Condensed Matter::OtherChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsstomatognathic diseasesGeneral EnergyWater solubleChemical engineeringnanohiukkaset0210 nano-technologygold nanoclustersThe Journal of Physical Chemistry C
researchProduct

Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids

2010

At the present time the bioprospective field is a dynamic area of research. The rapid biosynthesis of silver and gold nanoparticles without using toxic chemicals is reported here. Sorbus aucuparia is omnipresent in Europe. The aqueous leaves extract of the plant were used as reducing agent for the synthesis of silver and gold nanoparticles from their salt solutions. The synthesized nanoparticles were spherical, triangular and hexagonal in shape with an average size of 16 and 18nm for silver and gold, respectively. Different extract quantities, metal concentrations, temperatures and contact times were investigated to find their effect on nanoparticles synthesis. The resulting silver and gold…

SilverMaterials scienceMetal ions in aqueous solutionAnalytical chemistryMetal NanoparticlesNanoparticleSilver nanoparticleMetalAbsorbanceColloid and Surface ChemistryMicroscopy Electron TransmissionX-Ray DiffractionSpectroscopy Fourier Transform InfraredSorbusParticle SizePhysical and Theoretical ChemistryFourier transform infrared spectroscopyPlant ExtractsTemperatureSurfaces and InterfacesGeneral MedicineHydrogen-Ion ConcentrationPlant LeavesReducing AgentsColloidal goldvisual_artvisual_art.visual_art_mediumGoldInductively coupled plasmaCrystallizationOxidation-ReductionBiotechnologyColloids and Surfaces B: Biointerfaces
researchProduct

N-{4-[(3-Methylphenyl)sulfamoyl]phenyl}benzamide

2011

In the title compound, C20H18N2O3S, the dihedral angle between the central benzene ring and the amide group is 24.1 (3) and that between this ring and the aromatic ring of the tolyl group is 68.2 (16). In the crystal, adjacent molecules are linked by N—HO hydrogen bonds into a linear chain running along [100]. Weak C—HO contacts also occur. Extensive weak – interactions exist from both face-to-face and face-to-edge interactions occur between the aromatic rings [centroid–centroid distances = 3.612 (2) and 4.843 (2) A˚ ]. Related peerReviewed

röntgendiffraktiox-ray diffractionsulfoamiditsulfoamides
researchProduct

Systematic study of the physicochemical properties of a homologous series of aminobisphosphonates

2012

ABSTRACT: Aminobisphosphonates, e.g., alendronate and neridronate, are a well known class of molecules used as drugs for various bone diseases. Although these molecules have been available for decades, a detailed understanding of their most important physicochemical properties under comparable conditions is lacking. In this study, ten aminobisphosphonates, H2N(CH2)nC(OH)[P(O)(OH)2]2, in which n = 2-5, 7-11 and 15 have been synthesized. Their aqueous solubility as a function of temperature and pH, pKa-values, thermal stability, IR absorptions, and NMR spectral data for both liquid (1H, 13C, 31P-NMR) and solid state (13C, 15N and 31P-CPMAS NMR) were determined. Peer reviewed

Magnetic Resonance Spectroscopy116 Chemical sciencesSolid-statePharmaceutical Sciencephysicochemical properties010402 general chemistry01 natural sciencesArticleAnalytical Chemistrylcsh:QD241-441Homologous serieschemistry.chemical_compoundlcsh:Organic chemistryComputational chemistrybisphosphonates; aqueous solubility; pKa; physicochemical propertiesaqueous solubilityDrug DiscoveryAqueous solubilityMoleculeOrganic chemistrypKaThermal stabilityPhysical and Theoretical ChemistrySolubilitySpectral datata116bisphosphonatesAlendronateDiphosphonates010405 organic chemistryChemistryOrganic ChemistryTemperaturebisphosphonates aqueous solubility pKa physicochemical propertiesWaterNuclear magnetic resonance spectroscopyHydrogen-Ion Concentration0104 chemical sciences3. Good healthSolubilityChemistry (miscellaneous)Molecular Medicine
researchProduct

Evaluation of entropies of fusion of polychlorinated naphthalenes by model congeners: A DSC study

2006

Abstract Thirteen congeners of polychlorinated naphthalenes (PCN) were synthesized and studied by differential scanning calorimetry (DSC). Melting points (Tm) were obtained for all thirteen, and enthalpies of fusion (ΔHf) were obtained for nine congeners. Melting points of other PCNs, except for five, were found in literature. In addition, experimental ΔHf values determined by DSC were found only for 1- and 2-mono-chloronaphthalenes in the literature. The missing or uncertain values of the eight melting points and 64 enthalpies of fusion were estimated by multiple linear regressions using a set of thirteen molecular descriptors as candidates for independent variables. The stepwise model of …

Entropy of fusionPartition coefficientDifferential scanning calorimetryChemistryMolecular descriptorEnthalpy of fusionLinear regressionMelting pointThermodynamicsPhysical and Theoretical ChemistryCondensed Matter PhysicsThermal analysisInstrumentationThermochimica Acta
researchProduct

Preparation of potentially porous, chiral organometallic materials through spontaneous resolution of pincer palladium conformers.

2013

Understanding the mechanism by which advanced materials assemble is essential for the design of new materials with desired properties. Here, we report a method to form chiral, potentially porous materials through spontaneous resolution of conformers of a PCP pincer palladium complex ({2,6-bis[(di-t-butylphosphino)methyl]phenyl}palladium(II)halide). The crystallisation is controlled by weak hydrogen bonding giving rise to chiral qtz-nets and channel structures, as shown by 16 such crystal structures for X = Cl and Br with various solvents like pentane and bromobutane. The fourth ligand (in addition to the pincer ligand) on palladium plays a crucial role; the chloride and the bromide primaril…

crystal structuretermoanalyysichemistry.chemical_elementCrystal structurekiderakenne010402 general chemistryjauhe röntgen diffraktioCrystallography X-Ray01 natural scienceshuokoiset materiaalitpalladium kompleksiInorganic ChemistryMolecular recognitionOrganometallic CompoundsMoleculePincer ligandta116palladium pincer complexes; hexagonal channels; self-assembly; weak interactionssingle crystal X-ray diffractionpowder X-ray diffractionorganometalliMolecular Structure010405 organic chemistryChemistryStereoisomerismpalladium complexyksikide röntgen diffraktio0104 chemical sciencesPincer movementChemistryCrystallographySelf-assemblyporous materialsPorosityPalladiumMonoclinic crystal systemPalladiumDalton transactions (Cambridge, England : 2003)
researchProduct

Synthesis, thermal properties and X-ray structural study of weak C–H⋯OC hydrogen bonding in aliphatic polyester dendrimers

2004

Dendritic polyester compounds based on polyol with three, four and six reactive hydroxy groups as a molecular core, chloroacetyl chloride (or bromoacetyl bromide) and sodium metal enolate were prepared by a simple two-step synthetic procedure. The compounds were characterised by using the NMR and MS techniques, and the thermal properties were measured by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The structures of the crystalline compounds were determined by X-ray single crystal diffraction. Detailed analysis of the structures showed that the self-complementarity of the molecules together with a multitude of weak C-H⋯O=C hydrogen bonding results in crystal…

Thermogravimetric analysisHydrogen bondGeneral ChemistryCondensed Matter PhysicsChloroacetyl chloridePolyesterchemistry.chemical_compoundDifferential scanning calorimetrychemistryBromideDendrimerPolymer chemistryMoleculeGeneral Materials ScienceCrystEngComm
researchProduct

Evidence of Weak Halogen Bonding: New Insights on Itraconazole and its Succinic Acid Cocrystal

2012

Exact knowledge of the crystal structure of drugs and lead compounds plays a significant role in the fields of crystal engineering, docking, computational modeling (drug–receptor interactions), and rational design of potent drugs in pharmaceutical chemistry. The succinic acid cocrystal of the systemic antifungal drug, itraconazole, reported by Remenar et al. (J. Am. Chem. Soc.2003, 125, 8456–8457) (CSD: IKEQEU), represents one of the classical examples displaying a molecular fitting mechanism in the solid state. In this work, we disclose the X-ray single-crystal structure of the cis-itraconazole–succinic acid (2:1) cocrystal and found that it differs slightly from the previously reported st…

ta214Halogen bondta114Stereochemistryta221Rational designAntifungal drugGeneral ChemistryCondensed Matter PhysicsCrystal engineeringCocrystalCocrystalchemistry.chemical_compoundsymbols.namesakechemistrySuccinic acidDocking (molecular)symbolsGeneral Materials ScienceHalogen bondingItraconazolevan der Waals forceta116ta218Crystal Growth & Design
researchProduct

A novel magnetic Preyssler acid grafted chitosan nano adsorbent: synthesis, characterization and adsorption activity

2015

BACKGROUND This study concerns the application of magnetic heteropolyacids composite for the adsorption of organic compounds from aqueous solutions. A novel magnetic Preyssler/chitosan/Fe3O4 nanoparticles composite (PCNF) adsorbent was designed using a one-pot synthesis method and characterized by multiple techniques including X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), N2 adsorption–desorption isotherms and scanning electron microscopy (SEM). RESULTS The adsorption activity of PCNF was evaluated by the removal of methyl orange (as an anionic azo dye model, MO) from aqueous solution and all the factors influencing the removal efficiency, such as adsorbent dosage, initial …

LangmuirScanning electron microscopeGeneral Chemical EngineeringInorganic chemistryComposite numberInfrared spectroscopy02 engineering and technology010402 general chemistry01 natural sciencesInorganic ChemistryChitosanchemistry.chemical_compoundAdsorptionMethyl orangeWaste Management and DisposalAqueous solutionRenewable Energy Sustainability and the EnvironmentChemistryOrganic Chemistry021001 nanoscience & nanotechnologyPollution0104 chemical sciencesFuel TechnologyChemical engineering0210 nano-technologyBiotechnologyJournal of Chemical Technology & Biotechnology
researchProduct

In-depth structural analysis of lanthanoid coordination networks based on a flexible tripodal zwitterionic isonicotinate ligand

2019

Crystallizing metal–organic frameworks (MOFs) has been studied using a tripodal pyridinecarboxylic acid derivative ligand and selected lanthanoid salts. The zwitterionic ligand, 1,1′,1′′-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(pyridin-1-ium-4-carboxylate) (TTTPC) introduced as a bromide salt, forms coordination networks in aqueous environments and under ambient conditions with neodymium bromide, trifluoromethanesulfonate (OTf) or acetate (OAc). Seven structures are elucidated in detail using single crystal X-ray crystallography. TTTPC NdBr3, TTTPC NdBr2OTf, TTTPC NdBr(OTf)2 and TTTPC Nd(OTf)3 are porous 3D networks with similar ligand–metal and ligand–anion interactions, b…

LanthanideMaterials science02 engineering and technologyCrystal structureorganometalliyhdisteet010402 general chemistry01 natural scienceschemistry.chemical_compoundBromideGeneral Materials Sciencestructural analysisIsostructuralpolymeeritta116metal-organic frameworksLigandGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physicskiteetrakenneanalyysi0104 chemical sciencesCrystallographychemistryNetwork covalent bonding0210 nano-technologySingle crystalTrifluoromethanesulfonateCrystEngComm
researchProduct

Single crystal X-ray structural dataset of 1,2,4-dithiazolium tetrafluoroborate

2022

Herein, we present the crystallographic dataset of 1,2,4-dithiazolium tetrafluoroborate. Single crystal X-ray structural analysis evidences that the 1,2,4-dithiazolium ring is almost planar. The 1,2,4-dithiazolium and tetrafluoroborate ions contribute in hydrogen bonding wherein the N-H·N hydrogen bonding in 1,2,4-dithiazolium dimer forms an eight-membered pseudo ring with the R22(8) Etter's graph set. The information provided in this data contributes to the understanding of structural chemistry and hydrogen bonding interactions in dithiazole derivatives.

crystal structurehydrogen bondkemialliset sidoksetMultidisciplinaryvetysidoksetdata124-Dithiazoliumheterosykliset yhdisteetheterocycle
researchProduct

Identification of mixed bromidochloridotellurate anions in disordered crystal structures of (bdmim)2[TeX2Y4] (X, Y = Br, Cl; bdmim = 1-butyl-2,3-dime…

2014

The discrete mixed [TeBrxCl6−x]2− anions in their disordered crystal structures have been identified by using the phases prepared by the reaction of 1-butyl-2,3-dimethylimidazolium halogenides (bdmim)X with tellurium tetrahalogenides TeX4 (X = Cl, Br) as examples. Homoleptic (bdmim)2[TeX6] [X = Cl (1), Br (2)] and mixed (bdmim)2[TeBr2Cl4] (3), and (bdmim)2[TeBr4Cl2] (4) are formed depending on the choice of the reagents, and their crystal structures have been determined by single-crystal X-ray diffraction. The coordination environments of tellurium in all hexahalogenidotellurates are almost octahedral. Because of the crystallographic disorder, the mixed [TeBr2Cl4]2− and [TeBr4Cl2]2− anions …

kristallografiakiinteän tilan DFT laskutbromidochloridotelluratessolid-state DFT calculationsRaman spectroscopyRaman-spektroskopiakidetiedebromidikloriditelluraatit
researchProduct

Synthesis, characterization and thermal properties of new aromatic quaternary ammonium bromides

2004

Series of new aromatic R 2R′ 2N +Br - (R=benzyl, 4-methylbenzyl, 2-phenylethyl, 3-phenylpropyl; R′=ethyl, methyl, isopropyl) or RR′ 2NH +Br --type (R=benzyl, R′=isopropyl) quaternary ammonium bromides were prepared by using novel synthetic route in which a formamide (N,N-diethylformamide, N,N-dimethylformamide, N,N-diisopropylformamide) is treated with aralkyl halide in presence of a weak base. The compounds were characterized by 1H-NMR and 13C-NMR spectroscopy and mass spectrometry. Structures of the crystalline compounds were determined by X-ray single crystal diffraction, and in addition the powder diffraction method was used to study the structural similarities between the single crysta…

FormamideAmmonium bromideInorganic chemistryTriclinic crystal systemIonic liquidCondensed Matter PhysicsQuaternary ammonium bromideElectronic Optical and Magnetic MaterialsInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryX-ray single crystal diffractionBromideX-ray powder diffractionIonic liquidMaterials ChemistryCeramics and CompositesOrthorhombic crystal systemThermal analysisPhysical and Theoretical ChemistryWeak interactionsIsopropylMonoclinic crystal systemJournal of Solid State Chemistry
researchProduct

Rapid Self-Healing and Thixotropic Organogelation of Amphiphilic Oleanolic Acid–Spermine Conjugates

2021

Natural and abundant plant triterpenoids are attractive starting materials for the synthesis of conformationally rigid and chiral building blocks for functional soft materials. Here, we report the rational design of three oleanolic acid-triazole-spermine conjugates, containing either one or two spermine units in the target molecules, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The resulting amphiphile-like molecules 2 and 3, bearing just one spermine unit in the respective molecules, self-assemble into highly entangled fibrous networks leading to gelation at a concentration as low as 0.5% in alcoholic solvents. Using step-strain rheological measurements, we show ra…

Thixotropy116 Chemical sciencesSpermine02 engineering and technologySurfaces and Interfaces010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCombinatorial chemistrySoft materials0104 chemical scienceschemistry.chemical_compoundTriterpenoidchemistrySelf-healingAmphiphileElectrochemistryGeneral Materials Science0210 nano-technologyOleanolic acidSpectroscopyConjugateLangmuir
researchProduct

3,4-Dimethoxy-4'-methylbiphenyl

2013

In the title compound, C15H16O2, the dihedral angle between the planes of the aromatic rings is 30.5 (2). In the crystal, molecules are linked via C—HO hydrogen bonds and C— H interactions, forming a two-dimensional network lying parallel to (100). peerReviewed

röntgendiffraktiocrystal structuredendrimeeri prekursori010405 organic chemistryHydrogen bondChemistryAromaticitykiderakenneGeneral ChemistryDihedral angle010402 general chemistryCondensed Matter Physics01 natural sciencesOrganic PapersX-ray diffraction0104 chemical sciences3. Good healthCrystalCrystallographydendrimer precursorGeneral Materials Scienceta116Acta Crystallographica Section E-Structure Reports Online
researchProduct

3,5-Dimethoxy-4'-methylbiphenyl

2013

The title compound, C15H16O2, crystallizes with three independent mol­ecules in the asymmetric unit. The intra­molecular torsion angle between the aromatic rings of each mol­ecule are −36.4 (3), 41.3 (3) and −37.8 (3)°. In the crystal, the complicated packing of the mol­ecules forms wave-like layers along the b and c axes. The mol­ecules are connected via extensive meth­oxy–phenyl C—H…π inter­actions. A weak C—H…O hydrogen-bonding network also exists between meth­oxy O atoms and aromatic or meth­oxy H atoms.

röntgendiffraktiocrystal structuredendrimeeri prekursori010405 organic chemistryChemistryX-ray DiffractionAromaticitykiderakenneGeneral ChemistryDihedral angle010402 general chemistryCondensed Matter PhysicsBioinformaticsOrganic Papers01 natural sciences0104 chemical sciences3. Good healthCrystalCrystallographydendrimer precursorGeneral Materials Scienceta116
researchProduct

Non-Innocent Base Properties of 3- and 4-Pyridyl-dithia- and Diselenadiazolyl Radicals : The Effect of N-Methylation

2018

International audience; Condensation of persilylated nicotinimideamide and isonicotinimideamide with sulfur monochloride affords double salts of the 3-, 4-pyridyl-substituted 1,2,3,5-dithiadiazolylium DTDA cations of the general formula [3-, 4-pyDTDA][Cl][HCl] in which the pyridyl nitrogen serves as a noninnocent base. Reduction of these salts with triphenylantimony followed by deprotonation of the intermediate-protonated radical affords the free base radicals [3-, 4-pyDTDA], the crystal structures of which, along with those of their diselenadiazolyl analogues [3-, 4-pyDSDA], have been characterized by powder or single-crystal X-ray diffraction. The crystal structures consist of “pancake” π…

Base (chemistry)Radicalsuolat (yhdisteet)free radicals02 engineering and technologyCrystal structure010402 general chemistryMetathesistriflate saltsvapaat radikaalit01 natural sciencesMedicinal chemistryChlorideInorganic ChemistrydimersDeprotonationrikkiyhdisteetmedicinePhysical and Theoretical Chemistryta116dithiadiazoleschemistry.chemical_classificationIntermolecular forceFree base[CHIM.MATE]Chemical Sciences/Material chemistryN-methylation021001 nanoscience & nanotechnology0104 chemical sciencesoligomeerichemistry0210 nano-technologymedicine.drug
researchProduct

Self-Assembly of Water-Mediated Supramolecular Cationic Archimedean Solids

2013

Understanding the self-assembly of small structural units into large supramolecular assemblies remains one of the great challenges in structural chemistry. We have discovered that tetrahedral supramolecular cages, exhibiting the shapes of Archimedean solids, can be self-assembled by hydrogen bonding interactions using tricationic N-donors (1 or 2) in cooperation with water (W). Single crystal X-ray analysis shows that cage (2)4(W)6, assembled in an aqueous solution of cation 2 and KPF6, consists of four tripodal trications linked by six water monomers and resembles the shape of a truncated tetrahedron. Similarly, cage (1)4(W6)4 spontaneously self-assembles in an aqueous solution of cation 1…

Aqueous solutionHydrogen bondChemistryCrystal chemistrySupramolecular chemistryGeneral ChemistryCondensed Matter PhysicsArchimedean solidCrystallographysymbols.namesakeTruncated tetrahedronTetrahedronsymbolsGeneral Materials ScienceSelf-assemblyta116Crystal Growth & Design
researchProduct

Rapid Self-Healing and Thixotropic Organogelation of Amphiphilic Oleanolic Acid–Spermine Conjugates

2021

Natural and abundant plant triterpenoids are attractive starting materials for the synthesis of conformationally rigid and chiral building blocks for functional soft materials. Here, we report the rational design of three oleanolic acid–triazole–spermine conjugates, containing either one or two spermine units in the target molecules, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The resulting amphiphile-like molecules 2 and 3, bearing just one spermine unit in the respective molecules, self-assemble into highly entangled fibrous networks leading to gelation at a concentration as low as 0.5% in alcoholic solvents. Using step-strain rheological measurements, we show ra…

geelitsupramolekulaarinen kemiatoiminnalliset materiaalittriterpeenitorgaaniset yhdisteet
researchProduct

Synthesis, characterization and thermal properties of nine quaternary dialkyldiaralkylammonium chlorides

2006

Abstract Nine R 2 R 2 ′ N + Cl − (R=benzyl, 2-methylbenzyl, 3-methylbenzyl, 4-methylbenzyl, 2-phenylethyl or 3-phenylpropyl; R′=ethyl or methyl) quaternary dialkyldiaralkylammonium chlorides were synthesized by treating dimethylformamide or diethylformamide with non-substituted or substituted arylalkyl (aralkyl) halide in the presence of sodium carbonate. The 1H NMR, 13C NMR spectroscopy, mass spectroscopy and elemental analysis were used to characterize the synthesized products. The crystal structures of six compounds were determined by X-ray single crystal diffraction. Four of the compounds crystallized in monoclinic space groups C2/c and P21/c (or P21/n), one in triclinic space group P−1…

ChemistryOrganic ChemistrySpace groupCrystal structureNuclear magnetic resonance crystallographyTriclinic crystal systemAnalytical ChemistryInorganic ChemistryCrystallographyOrthorhombic crystal systemSingle crystalSpectroscopyPowder diffractionMonoclinic crystal systemJournal of Molecular Structure
researchProduct

Selective Laser Sintering of Metal-Organic Frameworks: Production of Highly Porous Filters by 3D Printing onto a Polymeric Matrix.

2019

Metal‐organic frameworks (MOFs) have raised a lot of interest, especially as adsorbing materials, because of their unique and well‐defined pore structures. One of the main challenges in the utilization of MOFs is their crystalline and powdery nature, which makes their use inconvenient in practice. Three‐dimensional printing has been suggested as a potential solution to overcome this problem. We used selective laser sintering (SLS) to print highly porous flow‐through filters containing the MOF copper(II) benzene‐1,3,5‐tricarboxylate (HKUST‐1). These filters were printed simply by mixing HKUST‐1 with an easily printable nylon‐12 polymer matrix. By using the SLS, powdery particles were fused t…

porosityMaterials sciencematerials sciencelaser sinteringMixing (process engineering)3D printingNanotechnologyorganometalliyhdisteet010402 general chemistry01 natural scienceslaw.inventionMatrix (chemical analysis)huokoisuusAdsorptionlaw3D-tulostuspolymeeritmateriaalitiedePorosityta116metal-organic frameworkspolymerschemistry.chemical_classification010405 organic chemistrybusiness.industryGeneral ChemistryPolymer0104 chemical sciencesSelective laser sinteringchemistryadsorptionMetal-organic frameworkadsorptiobusinessChemPlusChem
researchProduct

Halogen bonding drives the self-assembly of piperazine cyclophanes into tubular structures.

2009

Halogen bonding with 1,4-diiodotetrafluorobenzene leads to the self-assembly of piperazine cyclophanes into well-defined tubular structures with solvent inclusion.

SolventPiperazinechemistry.chemical_compoundHalogen bondchemistryMaterials ChemistryMetals and AlloysCeramics and CompositesOrganic chemistryGeneral ChemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemical communications (Cambridge, England)
researchProduct

Solid-State NMR, X-ray Diffraction, and Thermoanalytical Studies Towards the Identification, Isolation, and Structural Characterization of Polymorphs…

2009

Combined solid-state NMR, powder, and single crystal X-ray diffraction, as well as thermoanalytical studies were performed towards the identification, isolation, and structural characterization of ...

Magic angleChemistryGeneral ChemistryCrystal structureCondensed Matter Physicslaw.inventionCrystallographyDifferential scanning calorimetrySolid-state nuclear magnetic resonancePolymorphism (materials science)lawX-ray crystallographyGeneral Materials ScienceCrystallizationSingle crystalCrystal Growth & Design
researchProduct

Two-component self-assembly with solvent leading to "wet" and microcrystalline organogel fibers

2014

Abstract Hypothesis The microcrystalline fibers of N -(2-aminoethyl)-3α-hydroxy-5β-cholan-24-amide 1 provided a useful model system for studying the complex relationship between morphology, experimental parameters, solvent, and the phenomenon of organogelation. The presence of solvents in the solid forms of 1 along with crystallization behavior suggested solvate formation and polymorphic behavior. Experiments Forty solid state- and xerogel samples of 1 formed in organic solvents and in three categories of experimental conditions were analyzed with single crystal X-ray diffraction (XRD), powder X-ray diffraction (PXRD), Raman microscopy, and attenuated total reflection Fourier-transform infr…

Materials sciencecrystallizationbile acid amideInfrared spectroscopylaw.inventioninclusion crystalBiomaterialsCrystalColloid and Surface Chemistrysolvatelawmicrocrystalline fiberCrystallizationIsostructuralta116x-ray crystallographyorganogelxerogelraman microscopySurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsfourier transform infrared spectroscopyCrystallographyMicrocrystallineAttenuated total reflectionSingle crystalPowder diffractionJournal of Colloid and Interface Science
researchProduct

Metal Doping of Au25(SR)18- Clusters : Insights and Hindsights

2019

The structure, properties, and applications of atomically precise gold nanoclusters are the object of active research worldwide. Over the last few years, research has been also focusing on selective doping of metal nanoclusters through introduction of foreign-metal atoms. Doping has been studied for several clusters, especially the atomically precise Au25(SR)18. Doping has been carried out with noble metals, such as platinum, and less noble metals, such as cadmium and mercury, also because of the ease by which monodoping can be achieved with these metals. Previous studies, which relied extensively on the use of mass spectrometry and single crystal X-ray crystallography, led to assign the sp…

NMR of doped gold nanoclustersatomically precise gold nanoclusters Au25(SR)18 metal doping NMR of doped gold nanoclusters electrochemistry of doped gold nanoclusters single crystal X ray crystallography.single crystal X-ray crystallographychemistry.chemical_elementelectrochemistry of doped gold nanoclustersatomically precise gold nanoclusters010402 general chemistryElectrochemistry01 natural sciencesBiochemistryCatalysiskultaNanoclustersAu25(SR)18MetalColloid and Surface ChemistryKinetic isotope effectCluster (physics)metal dopingsingle crystal X ray crystallographyDopingNanoclustersFluorescent goldGeneral ChemistryNuclear magnetic resonance spectroscopykidetiedesähkökemia0104 chemical sciencesCrystallographychemistryvisual_artvisual_art.visual_art_mediumnanohiukkasetGoldPlatinum
researchProduct

Methyl 3',5'-dimethoxybiphenyl-4-carboxylate

2013

In the title compound, C16H16O4, the dihedral angle between the benzene rings is 28.9 (2)°. In the crystal, mol­ecules are packed in layers parallel to the b axis in which they are connected via weak inter­molecular C-H...O contacts. Face-to-face π-π inter­actions also exist between the benzene rings of adjacent mol­ecules, with centroid-centroid and plane-to-plane shift distances of 3.8597 (14) and 1.843 (2) Å, respectively.

röntgendiffraktiocrystal structuredendrimeeri prekursorikiderakenneDihedral angle010402 general chemistryBioinformatics01 natural sciencesOrganic PapersCrystalchemistry.chemical_compoundGeneral Materials ScienceBenzeneta116Biphenyl010405 organic chemistryHydrogen bondGeneral ChemistryMeth-Condensed Matter PhysicsX-ray diffraction0104 chemical sciences3. Good healthCrystallographychemistrydendrimer precursorLayer (electronics)
researchProduct

Spectral and structural studies on Ni(II) dithiocarbamates: Nickel sulfide nanoparticles from a dithiocarbamate precursor

2015

Abstract Three new planar Ni(II) dithiocarbamate complexes; [Ni(4-dpmpzdtc)2] (1), [Ni(4-dpmpzdtc)(PPh3)(NCS)] (2) and [Ni(bupcbzdtc)(PPh3)(NCS)] (3) (where, 4-dpmpzdtc = 4-(diphenylmethyl)piperazinecarbodithioato anion, bupcbzdtc = N-butyl-N-(4-chlorobenzyl))dithiocarbamato anion and PPh3 = triphenylphosphine) with “NiS4” and “NiS2PN” chromophore units were synthesized and characterized by single crystal X-ray structural analysis as well as UV–Vis, IR and NMR (1H, 13C and 31P) spectroscopy. For 2, 1H–1H COSY spectrum was also recorded. Single crystal X-ray structural analysis of 1–3, reveals a slightly distorted square planar geometry in all three complexes wherein the steric and electroni…

Steric effectschemistry.chemical_classificationNickel sulfidesynthesisChemistrySolvothermal synthesisInorganic chemistryNanoparticlesingle crystal XRDChromophoreInorganic ChemistrydithiocarbamateCrystallographychemistry.chemical_compoundSEMTEMMaterials Chemistrynickel sulfidePhysical and Theoretical ChemistrySpectroscopyDithiocarbamateta116Single crystalInorganica Chimica Acta
researchProduct

Rapid self-healing and anion selectivity in metallosupramolecular gels assisted by fluorine-fluorine interactions.

2017

Simple ML2 [M = Fe(II), Co(II), Ni(II)] complexes obtained from a perfluoroalkylamide derivative of 4-aminophenyl-2,2′,6,2′-terpyridine spontaneously, yet anion selectively, self-assemble into gels, which manifest an unprecedented rapid gel strength recovery, viz. self-healing, and thermal rearrangement in aqueous dimethyl sulfoxide. The key factor for gelation and rheological properties emerges from the fluorine–fluorine interactions between the perfluorinated chains, as the corresponding hydrocarbon derivative did not form metallogels. The perfluoro-terpyridine ligand alone formed single crystals, while its Fe(II), Co(II) or Ni(II) complexes underwent rapid gelation leading to highly enta…

kemiachemistry.chemical_element02 engineering and technology010402 general chemistrychemistry01 natural sciencesMetalInorganic Chemistrychemistry.chemical_compoundTheoretical and Computational ChemistryfluorinePolymer chemistryOrganic chemistryThermal stabilitymoleculeshydrocarbonsta116chemistry.chemical_classificationgeelitAqueous solutionta114Ligandmolekyylit021001 nanoscience & nanotechnologygelsfluorihiilivedyt0104 chemical sciencesHydrocarbonchemistryvisual_artFluorinevisual_art.visual_art_mediumInorganic & Nuclear Chemistry0210 nano-technologySelectivityOther Chemical SciencesDerivative (chemistry)
researchProduct

Facile fabrication of flower like self-assembled mesoporous hierarchical microarchitectures of In(OH)3 and In2O3: In(OH)3 micro flowers with electron…

2016

Abstract A template and capping-reagent free facile fabrication method for mesoporous hierarchical microarchitectures of flower-like In(OH) 3 particles under benign hydrothermal conditions is reported. Calcination of In(OH) 3 to In 2 O 3 with the retention of morphology is also described. Both In(OH) 3 and In 2 O 3 microstructures were analyzed with SEM, EDX, TEM and powder X-ray diffraction. The crystal sizes for In(OH) 3 and In 2 O 3 were calculated using the Scherrer equation. In In(OH) 3 the thin flakes at the periphery of micro flowers were electron beam sensitive. The mechanism of self-assembly process was analyzed as well.

DiffractionMaterials scienceFabricationmicrostructureNanotechnologysemiconductors02 engineering and technology010402 general chemistry01 natural sciencesHydrothermal circulationlaw.inventionCrystallawpuolijohteetGeneral Materials ScienceCalcinationta116Scherrer equationmicroporous materials021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure0104 chemical sciencesChemical engineeringoxidesoksidit0210 nano-technologyMesoporous material
researchProduct

Dimensional encapsulation of I− I 2 I− in an organic salt crystal matrix

2010

Bis(trimethylammonium)hexane diiodide encapsulates iodine from solution and through a gas/solid reaction yielding in a predictable and controllable manner the selective formation of the rare polyiodide species I(-)...I-I...I(-), which matches in length to the chosen dication.

inorganic chemicalseducationInorganic chemistryMetals and Alloyschemistry.chemical_elementGeneral ChemistrySolid reactionIodinebehavioral disciplines and activitieshumanitiesCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDicationHexanePolyiodidechemistry.chemical_compoundchemistryMaterials ChemistryCeramics and Compositeshealth care economics and organizations
researchProduct

Preparation and characterization of sodium iron titanate ion exchanger and its application in heavy metal removal from waste waters.

2006

Abstract The ion exchange properties of sodium iron titanates, namely, NaFeTiO4, Na2Fe2Ti6O16 and iron-doped sodium nonatitanate were investigated. Conventional solid state and sol–gel methods were used in the synthesis of the sodium iron titanates. Structural characterization of the materials was performed with powder X-ray diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) and with inductively coupled plasma optical emission spectrometry (ICP-OES). Based on TG analyses, the novel iron-doped sodium nonatitanate was proven to be a member of the layered titanate family. The different sodium iron titanates were compa…

TitaniumEnvironmental EngineeringAqueous solutionIon exchangeHealth Toxicology and MutagenesisSodiumPotassiumIronchemistry.chemical_elementIndustrial WasteOxidesPollutionTitanateThermogravimetryIon ExchangeNickelchemistryMetals HeavyEnvironmental ChemistryInductively coupled plasmaWaste Management and DisposalWater Pollutants ChemicalNuclear chemistryJournal of hazardous materials
researchProduct

Powder structures of two pharmaceutically interesting alkylaminobisphosphonates

2011

Structural BiologyActa Crystallographica Section A Foundations of Crystallography
researchProduct

Solid state structural studies of five bile acid derivatives

2008

Five synthetically important bile acid derivatives have been characterized by 13 C CP-MAS, X-ray diffraction (both single crystal and powder), FTIR, and thermoanalytical (DSC and TG) methods. The crystallinity of all these derivatives is high, which can be deducted from the 13 C CP-MAS and powder X-ray diffraction data. Two of the compounds showed polymorphism, and one polymorph was structurally elucidated for both by comparing single crystal and powder X-ray diffraction data.

Bile acidmedicine.drug_classChemistryOrganic ChemistryNuclear magnetic resonance crystallographyAnalytical ChemistryInorganic ChemistryCrystallinityCrystallographyPolymorphism (materials science)X-ray crystallographymedicineFourier transform infrared spectroscopyThermal analysisSingle crystalSpectroscopyJournal of Molecular Structure
researchProduct

Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures

2022

Global climate change ensued by the rise in atmospheric CO2 levels is one of the greatest challenges our planet is facing today. This worldwide distress demands technologies that can contribute to our society toward “negative carbon emissions”. Carbon capture and storage (CCS) technologies are in in important role for capturing CO2 from existing emission sources, such as industrial and energy production point sources, before new more prominent modifications to the energy infrastructure can be implemented. Recently, alongside point source capture, direct air capture (DAC) processes have emerged as highly sought-after technologies that are able to capture CO2 from the ambient air. Alongside t…

open metal sitescarbon capturehiiliProcess Chemistry and Technologyflue gasadsorption mechanismchemisorptionPollutionamine-functionalizedadsorbenthybrid ultra-microporous materialsphysisorptiondirect air captureregenerationChemical Engineering (miscellaneous)savukaasutadsorptiometal-organic frameworkshiilidioksidin talteenotto ja varastointiWaste Management and DisposalJournal of Environmental Chemical Engineering
researchProduct

Structural studies of five novel bile acid-4-aminopyridine conjugates

2012

Abstract Synthesis and solid-state structural characterization of five bile acid amides of 4-aminopyridine (4-AP) are reported. Systematic crystallization experiments revealed a number of structural modifications and/or solvate/hydrate systems for these conjugates. Particularly, cholic acid conjugate exhibited five distinct structure modifications, including one anhydrous form, mono- and dihydrates, as well as ethanol and 2-butanol solvates. The obtained crystal forms were examined extensively with various analytical methods, including solid-state NMR, Raman, and IR spectroscopies, powder and single crystal X-ray diffraction methods, thermogravimetry, and differential scanning calorimetry. …

Models MolecularMagnetic Resonance Spectroscopymedicine.drug_classButanolsClinical BiochemistryCrystallography X-RaySpectrum Analysis RamanBiochemistrylaw.inventionBile Acids and Saltschemistry.chemical_compoundEndocrinologylawmedicineOrganic chemistry4-AminopyridineCrystallizationta116Molecular BiologyPharmacologyCalorimetry Differential ScanningEthanolBile acidOrganic ChemistryCholic acidAmidesThermogravimetryCrystallographychemistryPolymorphism (materials science)ThermogravimetrySolventsCrystallizationHydrateSingle crystalConjugateSteroids
researchProduct

Bile acid–amino acid ester conjugates: gelation, structural properties, and thermoreversible solid to solid phase transition

2010

Design, synthesis, and gelation properties of three novel biocompatible bile acid–L-methionine methyl ester conjugates are presented. Two of the conjugates have been shown to undergo self-assembly leading to organogelation in certain aromatic solvents. The properties of these gels have been investigated by conventional methods typical for molecular gel studies along with 13C CPMAS NMR spectroscopic studies of the native gel. In addition, properties in solid and solution states for all three compounds have been investigated, and single crystal X-ray structures of all compounds determined. Furthermore, powder X-ray diffraction studies have revealed that compound 1 undergoes a dynamic and reve…

chemistry.chemical_classificationDiffractionConformational changePhase transitionBile acidmedicine.drug_classChemistryGeneral ChemistryCondensed Matter PhysicsAmino acidPolymer chemistrymedicineOrganic chemistrySingle crystalConformational isomerismConjugateSoft Matter
researchProduct

Steroid-based gelators of A(LS)2 type: Tuning gel properties by metal coordination

2020

By utilizing up-to-date knowledge about gelators, we designed and synthesized a novel low-molecular-weight gelator bearing a pyridine-2,6-dicarboxylic acid moiety and two cholesteryl glycinate units. In order to demonstrate the ingenuity of our design, we prepared a series of structurally related compounds and studied their gelation properties. Based on the results, we determined structural features of the gelator molecules which were important for successful gel formation. We showed that the properties of the gel systems (transparency, morphology, etc.) can be tuned by coordination with different metal ions, as well as by changing the solvent. Gelators, and their gels and xerogels were stu…

Materials scienceMetal ions in aqueous solutionInorganic chemistryGeneral ChemistryNuclear magnetic resonance spectroscopyCondensed Matter PhysicsSilver nanoparticleMetalSolventChemical engineeringvisual_artvisual_art.visual_art_mediumMoietyMoleculeSingle crystalta116Soft Matter
researchProduct

Halogen-Bonded Mono-, Di-, and Tritopic N-Alkyl-3-iodopyridinium Salts

2023

Halogen bonding interactions of 15 crystalline 3-iodopyridinium systems were investigated. These systems were derived from four N-alkylated 3-iodopyridinium salts prepared in this study. The experimental results in the solid state show that halogen bonding acts as a secondary intermolecular force in these charged systems but sustains the high directionality of interaction in the presence of other intermolecular forces. Halogen bonds donated by polytopic 3-iodopyridinium cations are also sufficient to enclose guest molecules inside the formed supramolecular cavities. The experimental data were supplemented by computational gas-phase and solid-state studies for selected halogen-bonded systems…

jodikemialliset sidoksethalogeenitsupramolekulaarinen kemiaGeneral Materials ScienceGeneral ChemistryCondensed Matter PhysicsCrystal Growth & Design
researchProduct

Novel Au NPs/Preyssler acid/TiO 2 nanocomposite for the photocatalytic removal of azo dye

2014

Abstract In this study, we introduced a novel nanocomposite consisting of Au nanoparticles decorated TiO 2 and Preyssler acid as a multifunctional photocatalyst linker molecule, in which gold ions reduced locally on the TiO 2 surface. The obtained nanocomposite has been characterized using Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD), Electron Dispersive X-ray (EDX) Spectroscopy, Transmission Electron Microscopy (TEM) and Scanning Electron Microscope (SEM). Also, their photocatalytic activity has been studied for the degradation of model organic azo dye Malachite Green under UV light irradiation.

Materials scienceNanocompositeScanning electron microscopetechnology industry and agricultureNanoparticleFiltration and SeparationPhotochemistryAnalytical Chemistrychemistry.chemical_compoundchemistryTransmission electron microscopyPhotocatalysisMoleculeMalachite greenFourier transform infrared spectroscopyta116Nuclear chemistrySeparation and Purification Technology
researchProduct

Molybdenum(VI) complexes with a chiral L-alanine bisphenol [O,N,O,O’] ligand : Synthesis, structure, spectroscopic properties and catalytic activity

2023

Dioxidomolybdenum(VI) compound [MoO2Cl2(dmso)2] reacts with a chiral tetradentate O3N-type L-alanine bisphenol ligand precursor (Et3NH)H2Lala to form an oxidochloridomolybdenum(VI) complex [MoOCl(Lala)] (1) as two separable geometric isomers with phenolate groups in cis or trans positions. The single crystal X-ray and NMR analyses of cis- and trans-1 reveal that the complexes are formed of monomeric molecules, in which the ligand has a tetradentate coordination through three oxygen donors and one nitrogen donor. The reaction of Na2MoO4·2H2O with the same ligand precursor in an acidic methanol solution leads to the formation of an anionic dioxido complex (Et3NH)[MoO2(Lala)] (2) with a trans …

epoxidationsmolybdenumkatalyytitcatalysisL-alaninekompleksiyhdisteetmolybdeeni
researchProduct

Synthesis, characterization, crystal structures and biological screening of 4-amino quinazoline sulfonamide derivatives

2019

Three quinazolin-4-ylamino derivatives containing phenylbenzenesulfonamides (7a-7c) were synthesized by reacting (E)-N'-(2-cyanophenyl)-N,N-dimethyl formamidine (6) with different 4- amino-N-(phenyl)benzenesulfonamides (4a-4c) and characterized by different techniques such as HRMS, IR, 1H NMR and 13C NMR spectroscopy. The structural properties were further examined by single crystal X-ray diffraction method. The X-ray data shows that compounds 7a and 7c contain two molecules and 7b contains one molecule in the asymmetric unit. Comparison of conformation of two distinct molecules, “A” and “B”, in the asymmetric unit of 7a and 7c were studied with the aid of reported literature. The in vitro …

antiproliferative activitycrystal structurearomaattiset yhdisteetStereochemistryX-ray-diffractionCrystal structure010402 general chemistry01 natural sciencesAnalytical ChemistryInorganic Chemistrychemistry.chemical_compoundQuinazolineMoleculeta116Spectroscopychemistry.chemical_classificationantimikrobiset yhdisteetkemiallinen synteesi010405 organic chemistryOrganic Chemistryta1182Antimicrobialquinazoline-sulfonamide0104 chemical sciencesSulfonamidechemistryX-ray crystallographysolunsalpaajatProton NMRantimicrobialSingle crystal
researchProduct

Characterization of ALD grown TixAlyN and TixAlyC thin films

2017

Atomic layer deposition (ALD) was used to grow TixAlyN and TixAlyC thin films using trimethylaluminum (TMA), titanium tetrachloride and ammonia as precursors. Deposition temperature was varied between 325 °C and 500 °C. Films were also annealed in vacuum and N2-atmosphere at 600–1000 °C. Wide range of characterization methods was used including time-of-flight elastic recoil detection analysis (ToF-ERDA), X-ray diffractometry (XRD), X-ray reflectometry (XRR), Raman spectroscopy, ellipsometry, helium ion microscopy (HIM), atomic force microscopy (AFM) and 4-point probe measurement for resistivity. Deposited films were roughly 100 nm thick and contained mainly desired elements. Carbon, chlorin…

ToF-ERDAMAX-phasesALD
researchProduct

Bringing a Molecular Plus One : Synergistic Binding Creates Guest-Mediated Three-Component Complexes

2020

C-Ethyl-2-Methylresorcinarene (A), pyridine (B), and a set of ten carboxylic acids (Cn) associate to form A·B·Cn ternary assemblies with 1:1:1 stoichiometry, representing a useful class of ternary systems where the guest mediates complex formation between the host and a third component. Although individually weak in solution, the combined strength of the multiple non-covalent interactions organizes the complexes even in a highly hydrogen-bond competing methanol solution as explored by both experimental and computational methods. The interactions be-tween A·B and Cn are dependent on the pKa values of carboxylic acids. The weak interactions between A and C further reinforce the interactions b…

carboxylic acidskarboksyylihapotsupramolekulaarinen kemiamolekyylitmolecular recognitionsupramolecular chemistrydiagnostic toolstunnistaminen
researchProduct

Synthesis, characterization, and thermal behavior of steroidal dendrons

2004

A series of novel dendritic steroidal polyesters of first and second generation has been synthesized in convergent fashion by the use of 2,2-bis(hydroxymethyl)propionic acid as a repeating unit. The first- and second-generation hydroxy-functionalized dendrons with a variety of surface modifications were produced through the use of four bile acids: lithocholic acid (LCA), ursodeoxycholic acid (UDCA), deoxycholic acid (DCA), and cholic acid (CA). The thermal behavior of the steroidal dendrons was characterized by differential scanning calorimetry (DSC) and by thermogravimetric analysis (TGA). Finally, quantum chemical calculation methods were used to study the geometries of the dendrons and t…

Aliphatic estersThermogravimetric analysisDendrimersLithocholic acidHydrogen bondOrganic ChemistryDeoxycholic acidCholic acidBile acidschemistry.chemical_compoundchemistryDendrimerPolymer chemistryOrganic chemistryMoleculeHydroxymethylSteroidsThermal analysisPhysical and Theoretical ChemistryEuropean Journal of Organic Chemistry
researchProduct

X-ray Powder Structure Determination and Thermal Behavior of a New Modification of Pb(II) Selenite

2002

The crystal structure of a new polymorphic form of lead(II) selenite (PbSeO3) was solved directly from conventional X-ray powder diffraction data. Direct methods and Rietveld refinement techniques were used for the structure determination. The compound crystallizes in the monoclinic space group P21/c (no. 14) with cell dimensions a = 9.1587(1) A, b = 8.0902(1) A, c = 8.7932(1) A, β = 103.032(1)°, and V = 634.76(2) A3. The final refinement gave background excluded Rp = 6.22%, Rwp = 8.81%, and RB = 2.16% by using 45 structural and 15 profile parameters with 10 atoms in an asymmetric unit. The three-dimensional structure consists of 9-coordinated lead atoms, which are linked by three bidentate…

Materials scienceDenticityRietveld refinementGeneral Chemical Engineeringchemistry.chemical_elementGeneral ChemistryCrystal structureCrystallographyPolymorphism (materials science)chemistryMaterials ChemistryThermal analysisPowder diffractionSeleniumMonoclinic crystal systemChemistry of Materials
researchProduct

Synthesis and thermal behavior of Janus dendrimers, part 1

2010

Abstract Eight Janus-type dendrimers up to the second generation were synthesized, and their thermal properties were evaluated. Compounds consist of the dendritic bisMPA based polyester moieties, and either 3,4-dihexyloxybenzoic acid or 3,4-dihexadecyloxybenzoic acid moieties, attached to opposite sides of the pentaerythritol core. The structures of the molecules were verified with 1 H NMR, 13 C NMR, ESI TOF mass spectrometry and elemental analysis. The thermal stability was evaluated by thermogravimetric analysis, displaying onset decomposition temperatures ( T d ) ranging from 241 to 308 °C. Phase transitions were studied by differential scanning calorimetry. Based on the performed studie…

Thermogravimetric analysisChemistryCondensed Matter PhysicsPentaerythritolThermogravimetrychemistry.chemical_compoundDifferential scanning calorimetryDendrimerPolymer chemistryProton NMRThermal stabilityPhysical and Theoretical ChemistryThermal analysisInstrumentationThermochimica Acta
researchProduct

A linear Fe-O-Fe unit in bis(dibenzyldimethylammonium) mu-oxo-bis[tribromoferrate(III)].

2006

The title compound, (C 16 H 20 )N) 2 [Fe 2 Br 6 O], crystallizes with one dibenzyldimethylammonium cation and one half of a μ-oxo-bis[tribromoferrate(III)] anion in the asymmetric unit. The bridging oxo group is situated on an inversion centre, resulting in a linear conformation for the Fe-O-Fe unit. The iron(III) cations have tetrahedral geometry, with bond angles in the range 106.8 (1)-112.2 (1)°. The ion pairs are held together by Coulombic forces and C-H···Br hydrogen bonds. Each Br - anion forms one hydrogen bond. No C-H···O hydrogen bonds are found between the O atom in the Fe-O-Fe unit and surrounding counter-cations, consistent with the linear configuration of the Fe-O-Fe unit.

Models MolecularOne halfMolecular StructureHydrogen bondChemistryIronTetrahedral molecular geometryHydrogen BondingGeneral MedicineCrystal structureIon pairsCrystallography X-RayGeneral Biochemistry Genetics and Molecular BiologyIonOxygenQuaternary Ammonium CompoundsCrystallographyMolecular geometryLinear configurationActa crystallographica. Section C, Crystal structure communications
researchProduct

Synthesis of self-assembled α-GaOOH microrods and 3D hierarchical architectures with flower like morphology and their conversion to α-Ga2O3

2015

Abstract This report reveals the methodology for the fabrication of α-GaOOH micro rods and micro flowers from gallium nitrate with two different complexing agents. α-GaOOH self-assembled 3D hierarchical architecture, comprising of nanorods and nanoribbbons with a flower like morphology, is fabricated under benign hydrothermal conditions. Calcination of α-GaOOH results in formation of α-Ga 2 O 3 with the retention of morphology. Both gallium oxyhydroxide and gallium oxide microstructures were analyzed with SEM, EDX, TEM and powder X-ray diffraction. α-Ga 2 O 3 micro flowers are furnished with nanorods having ordered diamond like cross section with a diagonal length proportion of 2:1. The hyd…

Materials scienceMorphology (linguistics)GaOOHNanoparticlechemistry.chemical_elementNanotechnologyengineering.materialHydrothermal circulationlaw.inventionSynthesisNanoparticlelawGeneral Materials ScienceCalcinationGalliumta116MicrostructureMechanical EngineeringDiamondCondensed Matter PhysicsMicrostructureHydrothermalChemical engineeringchemistryMechanics of MaterialsengineeringNanorodCalcinationMaterials Letters
researchProduct

Crystal Structures and Thermal Behavior of Isostructural Bis(dibenzyldimethylammonium) Tetrachlorometallate [M = Mn(II), Co(II), Ni(II) and Zn(II)] S…

2007

Five isostructural bis(dibenzyldimethylammonium) tetrachlorometallate solvate complexes [M = Mn(II), Co(II), Ni(II) or Zn(II)] were crystallized from acetonitrile and/or methanol solutions. The crystal structures are compared to those of the analogous, isostructural copper compounds (X = Cl or Br) reported earlier. The complexes crystallize in the monoclinic space group P21/n with Z = 4, and unit cell dimensions of a ≈ 14.1, b ≈ 16.1, c ≈ 15.7 °A and β ≈ 108 - 109°. The asymmetric unit of these compounds contains one MCl4 2− anion, two Bz2Me2N+ cations in theW-conformation and one half of a disordered solvent molecule (acetonitrile or methanol). The geometry of the MCl4 2− anion is close to…

Crystallographychemistry.chemical_compoundchemistryIonic bondingchemistry.chemical_elementGeneral ChemistryMethanolCrystal structureIsostructuralAcetonitrileDecompositionCopperIonZeitschrift für Naturforschung B
researchProduct

Halogen Bonding Based “Catch and Release”: Reversible Solid State Entrapment of Elemental Iodine with Mono-Alkylated DABCO Salts

2012

The halogen bonding (XB) between elemental iodine (I2) and neutral 1,4-diazabicyclo[2.2.2]octane (DABCO) and its monoalkylated PF6– salts was studied by X-ray crystallographic, thermoanalytical, and computational methods. DABCO was found to form both 1:1 and 1:2 complexes with I2 showing an exceptionally strong halogen bond (ΔEcp = −73.0 kJ/mol) with extremely short N···I distance (2.37 A) in the 1:1 complex (1a). In the more favored 1:2 complex (1b), the XB interaction was found to be slightly weaker [ΔEcp = −64.4 kJ/mol and d(N···I) = 2.42 A] as compared to 1a. The monoalkylated DABCO salts (2PF6–7PF6) form corresponding 1:1 XB complexes with I2 {[2···I2]PF6–([7···I2]PF6} similarly to the…

chemistry.chemical_classificationHalogen bondFree baseGeneral ChemistryDABCOCrystal structureCondensed Matter Physicschemistry.chemical_compoundCrystallographychemistryHalogenOrganic chemistryGeneral Materials ScienceThermal analysista116AlkylOctaneCRYSTAL CROWTH & DESIGN
researchProduct

N-{4-[(3-Methyl-phen-yl)sulfamo-yl]phen-yl}benzamide.

2011

In the title compound, C20H18N2O3S, the dihedral angle between the central benzene ring and the amide group is 24.1 (3)° and that between this ring and the aromatic ring of the tolyl group is 68.2 (16)°. In the crystal, adjacent molecules are linked by N—H...O hydrogen bonds into a linear chain running along [100]. Weak C—H...O contacts also occur. Extensive weak π–π interactions exist from both face-to-face and face-to-edge interactions occur between the aromatic rings [centroid–centroid distances = 3.612 (2) and 4.843 (2) Å].

CrystallographyHydrogen bondAromaticityGeneral ChemistryDihedral angleCondensed Matter PhysicsBioinformaticsRing (chemistry)Organic PapersCrystalchemistry.chemical_compoundCrystallographychemistryQD901-999AmideGeneral Materials ScienceBenzamideBenzeneta116Acta crystallographica. Section E, Structure reports online
researchProduct

From Mannose to Small Amphiphilic Polyol: Perfect Linearity Leads To Spontaneous Aggregation

2016

Terminally unsaturated and diastereochemically pure polyol derived from d-mannose shows spontaneous aggregation behavior in water solution. In order to study and clarify this unforeseen phenomenon, a conformational study based on NMR spectroscopy combined with ab initio structure analysis using the COSMO-solvation model was pursued. The results, together with X-ray diffraction studies, suggest a low energy linear conformation for this particular substrate both in solid states and in solution. For such small-sized acyclic carbohydrate derivatives, the linear conformation appears to be a key prerequisite for the unusual molecular self-assembly reported herein. peerReviewed

X ray diffractionAb initioMannosed-mannose010402 general chemistry01 natural sciencesspontaneous aggregationchemistry.chemical_compoundPolyolAmphiphileGeneral Materials Scienceta116Nuclear magnetic resonance spectroscopychemistry.chemical_classificationpolyolsta114010405 organic chemistryChemistrySubstrate (chemistry)General ChemistryNuclear magnetic resonance spectroscopySelf assemblyCondensed Matter Physics0104 chemical sciencesCrystallographyX-ray crystallographySelf-assemblyCrystal Growth & Design
researchProduct

Powder X-ray diffraction data for potassium silver thiocyanate, AgK(SCN)2 and dipotassium silver thiocyanate, AgK2(SCN)3

2002

Previously unpublished powder X-ray diffraction data for potassium silver thiocyanate, AgK(SCN)2 and dipotassium silver thiocyanate, AgK2(SCN)3 are presented. F30 values for AgK(SCN)2 and AgK2(SCN)3 are 80(0.0075, 50) and 53(0.0089, 63), respectively. The Rietveld refinement of the patterns is also performed. For AgK(SCN)2Rp=6.98, Rwp=11.84, and RBragg=2.9. For AgK2(SCN)3Rp=7.22, Rwp=10.79, and RBragg=5.0.

Crystallographychemistry.chemical_compoundRadiationchemistrySilver thiocyanateRietveld refinementPotassiumX-ray crystallographyInorganic chemistrychemistry.chemical_elementGeneral Materials ScienceCondensed Matter PhysicsInstrumentationPowder Diffraction
researchProduct

Insights into localized manipulation of organogel-related microcrystalline spherulite formation

2015

Abstract The formation processes of microcrystalline spherulitic fiber systems related to bile acid amides were determined to include dominant interface-related aspects, the role of which were studied in terms of potential manipulation and increased control over the overall structure of the networks. The nucleation and growth properties and aggregation of two lithocholyl amide derivatives were studied in several organic solvents using thermomicroscopy, as well as thermal control at macroscopic level. Nucleation/crystallization at interfaces was observed to act as the main route for the formation of microcrystalline fibers/solids in six gelator–solvent systems, in which spherulite formation …

Materials scienceSpheruliteOrganogelNucleationFiber networkSpherulite (polymer physics)InterfaceThermal controllaw.inventionCrystallographyColloid and Surface ChemistryMicrocrystallineChemical engineeringlawBile acid amideNucleationFiberCrystallizationCrystallizationta116Topology (chemistry)Colloids and Surfaces A: Physicochemical and Engineering Aspects
researchProduct

Hydrogen and Halogen Bond Mediated Coordination Polymers of Chloro-Substituted Pyrazin-2-Amine Copper(I) Bromide Complexes

2020

A new class of six mono- (1

DenticityPyrazineDimer116 Chemical sciencesSubstituentSupramolecular chemistry010402 general chemistry01 natural scienceskemialliset sidoksetchemistry.chemical_compoundcopper halidehydrogen bondvetysidoksetHalogen bondhalogeenit010405 organic chemistryHydrogen bondCopper(I) bromideGeneral Medicine3. Good health0104 chemical sciencesCrystallographychemistryhalogeenisidoksetchloropyrazinechloropyrazin-2-aminepyrazinehalogen bondChemistry
researchProduct

NI halogen bonding supported stabilization of a discrete pseudo-linear [I12]2− polyiodide

2015

Two different dicationic N-donors, based on the DABCO diamine, have been studied as templates for polyiodides. The results present a new strategy for polyiodide stabilization, which involves both N⋯I halogen bonding and cation–anion interactions. This is highlighted by the self-assembly of an unprecedented discrete pseudo-linear dodecaiodide species.

Halogen bondInorganic chemistryGeneral ChemistryDABCOCondensed Matter Physicschemistry.chemical_compoundPolyiodideTemplatechemistryhalogen bondingDiaminePolymer chemistryGeneral Materials Scienceta116CrystEngComm
researchProduct

Bringing a Molecular Plus One: Synergistic Binding Creates Guest-Mediated Three-Component Complexes

2020

Cethyl-2-methylresorcinarene (A), pyridine (B), and a set of 10 carboxylic acids (Cn) associate to form A·B·Cn ternary assemblies with 1:1:1 stoichiometry, representing a useful class of ternary systems where the guest mediates complex formation between the host and a third component. Although individually weak in solution, the combined strength of the multiple noncovalent interactions organizes the complexes even in a highly hydrogen-bond competing methanol solution, as explored by both experimental and computational methods. The interactions between A·B and Cn are dependent on the pKa values of carboxylic acids. The weak interactions between A and C further reinforce the interactions betw…

chemistry.chemical_classification010405 organic chemistryStereochemistryComponent (thermodynamics)Organic ChemistryComplex formationCarboxylic AcidsCooperative bindingHydrogen Bonding010402 general chemistry01 natural sciences0104 chemical sciencesChemistrychemistry.chemical_compoundMolecular recognitionchemistryPyridineNon-covalent interactionsTernary operationBiochemistry Biophysics and Structural BiologyStoichiometryThe Journal of Organic Chemistry
researchProduct

Probing the Gelation Synergies and Anti-Escherichia coli Activity of Fmoc-Phenylalanine/Graphene Oxide Hybrid Hydrogel

2023

The N-fluorenyl-9-methyloxycarbonyl (Fmoc)-protected amino acids have shown high antimicrobial application potential, among which the phenylalanine derivative (Fmoc-F) is the most well-known representative. However, the activity spectrum of Fmoc-F is restricted to Gram-positive bacteria only. The demand for efficient antimicrobial materials expanded research into graphene and its derivatives, although the reported results are somewhat controversial. Herein, we combined graphene oxide (GO) flakes with Fmoc-F amino acid to form Fmoc-F/GO hybrid hydrogel for the first time. We studied the synergistic effect of each component on gelation and assessed the material’s bactericidal activity on Gram…

hyytyminenpeptiditGeneral Chemical EngineeringpeptidesgelationproteiinitGeneral ChemistryhydrogeelitbacteriamonomershydrogelsproteinsbakteeritACS Omega
researchProduct

A comparative study for the removal of methylene blue dye by N and S modified TiO2 adsorbents

2015

Successful removal of methylene blue (MB) dye from aqueous solutions using nitrogen and sulfur modified TiO2(P25) nanoparticles has been demonstrated in this study. The modified adsorbents were characterized using various analytical methods, such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The adsorption potential of S-TiO2, N-TiO2 and TiO2(P25) type adsorbents was tested for the removal of MB dye. The kinetic studies indicated that the adsorption of MB dye followed the pseudo-first order model, while desorption processes followed the second order model. The adsorption capacity of the adsorbent proved to be increasing as a f…

Scanning electron microscopeInorganic chemistryKineticsAdsorbentchemistry.chemical_elementNanoparticleIsothermschemistry.chemical_compoundAdsorptionTiODesorptionMaterials ChemistryTiO2Physical and Theoretical Chemistryta116SpectroscopyMethylene blueAqueous solutionpHCondensed Matter PhysicsSulfurAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsKineticschemistryMethylene blueJournal of Molecular Liquids
researchProduct

Improved synthesis and application of conjugation-amenable polyols from d-mannose

2019

A series of polyhydroxyl sulfides and triazoles was prepared by reacting allyl and propargyl d-mannose derivatives with selected thiols and azides in thiol-ene and Huisgen click reactions. Conformational analysis by NMR spectroscopy proved that the intrinsic rigidity and linear conformation of the mannose derived polyol backbone is retained in the final click products in solution. Single crystal X-ray structure determination of one of the compounds prepared further verified that the linear conformation of the polyol segment is also retained in the solid state. In addition, an improved method for direct Barbier-type propargylation of unprotected d-mannose is reported. The new reaction protoc…

chemistry.chemical_classificationChemical substanceGeneral Chemical EngineeringAlkyneMannoseGeneral ChemistryNuclear magnetic resonance spectroscopyCombinatorial chemistrychemistry.chemical_compoundchemistryPolyolPropargylProtecting groupSingle crystalRSC Advances
researchProduct

Tetrameric and Dimeric [N∙∙∙I+∙∙∙N] Halogen-Bonded Supramolecular Cages

2017

Tripodal N‐donor ligands are used to form halogen‐bonded assemblies via structurally analogous Ag+‐complexes. Selective formation of discrete tetrameric I6L4 and dimeric I3L2 halonium cages, wherein multiple [N⋅⋅⋅I+⋅⋅⋅N] halogen bonds are used in concert, can be achieved by using sterically rigidified cationic tris(1‐methyl‐1‐azonia‐4‐azabicyclo[2.2.2]octane)‐mesitylene ligand, L1(PF6)3, and flexible ligand 1,3,5‐tris(imidazole‐1‐ylmethyl)‐2,4,6‐trimethylbenzene, L2, respectively. The iodonium cages, I6L14(PF6)18 and I3L22(PF6)3, were obtained through the [N⋅⋅⋅Ag+⋅⋅⋅N]→ [N⋅⋅⋅I+⋅⋅⋅N] cation exchange reaction between the corresponding Ag6L14(PF6)18 and Ag3L22(PF6)3 coordination cages, prepare…

supramolecular cageshalogen bonds
researchProduct

High-Generation Amphiphilic Janus-Dendrimers as Stabilizing Agents for Drug Suspensions

2018

Pharmaceutical nanosuspensions are formed when drug crystals are suspended in aqueous media in the presence of stabilizers. This technology offers a convenient way to enhance the dissolution of poorly water-soluble drug compounds. The stabilizers exert their action through electrostatic or steric interactions, however, the molecular requirements of stabilizing agents have not been studied extensively. Here, four structurally related amphiphilic Janus-dendrimers were synthesized and screened to determine the roles of different macromolecular domains on the stabilization of drug crystals. Physical interaction and nanomilling experiments have substantiated that Janus-dendrimers with fourth gen…

Recrystallization (geology)huumeetPolymers and Plastics116 Chemical sciences02 engineering and technology01 natural sciencesdrugsContact angleMaterials ChemistryHUMAN LECTINSSurface plasmon resonanceta116chemistry.chemical_classificationChemistryBIOLOGICAL-MEMBRANES021001 nanoscience & nanotechnologyPROGRAMMABLE GLYCAN LIGANDSINDOMETHACIN317 PharmacyCLICK CHEMISTRYfarmaseuttinen kemia0210 nano-technologyHydrophobic and Hydrophilic InteractionsDendrimersSURFACEBioengineeringPoloxamer010402 general chemistryRSPOORLY SOLUBLE DRUGBiomaterialsHydrophobic effectSurface-Active AgentsSuspensionslääkeyhdisteetDendrimerAmphiphileGLYCODENDRIMERSOMESta216ta215AlkylMODULAR SYNTHESISWaterPoloxamerCombinatorial chemistry0104 chemical scienceslääkkeet1182 Biochemistry cell and molecular biologypharmaceutical nanosuspensionsCOMPLEX ARCHITECTURESBiomacromolecules
researchProduct

Methyl 3',4',5'-trimethoxybiphenyl-4-carboxylate

2013

In the title compound, C17H18O5, the dihedral angle between the benzene rings is 31.23 (16)°. In the crystal, the mol­ecules are packed in an anti­parallel fashion in layers along the a axis. In each layer, very weak C-H...O hydrogen bonds occur between the meth­oxy and methyl ester groups. Weak C-H...[pi] inter­actions between the 4'- and 5'-meth­oxy groups and neighbouring benzene rings [meth­oxy-C-ring centroid distances = 4.075 and 3.486 Å, respectively] connect the layers.

röntgendiffraktiocrystal structuredendrimeeriprekursorikiderakenneDihedral angle010402 general chemistry010403 inorganic & nuclear chemistryAntiparallel (biochemistry)01 natural sciencesOrganic PapersCrystalchemistry.chemical_compoundMoleculeGeneral Materials ScienceCarboxylateBenzeneta116ChemistryHydrogen bondGeneral ChemistryCondensed Matter Physics3. Good health0104 chemical sciencesX-ray diffractionCrystallographydendrimer precursorSingle crystal
researchProduct

Novel one-pot synthesis of quaternary ammonium halides: new route to ionic liquids

2004

Treatment of an amide with an alkyl or substituted alkyl halide in the presence of a weak base in a one-pot reaction leads to crystalline quaternary ammonium halides with reasonable chemical yields; some of the compounds show low melting points and a liquid range of over 50–100 °C before decomposition.

chemistry.chemical_classificationInorganic chemistryOne-pot synthesisHalideGeneral ChemistryCatalysischemistry.chemical_compoundchemistryAmideIonic liquidMaterials ChemistryMelting pointAmmoniumWeak baseAlkylNew Journal of Chemistry
researchProduct

Solution stoichiometry determines crystal stoichiometry in halogen-bonded supramolecular complexes

2007

The behavior of the methylisonicotinate (MINC) building block as halogen bonding-acceptor module has been investigated in the solid state. Both the N and the O atoms of MINC interact with the iodine atoms of 1,4-diiodotetrafluorobenzene (DITFB) giving rise to N⋯I and O⋯I interactions. Hierarchy between these interactions allows the control of the composition and thus the structure of the supramolecular complex, according to the composition of the reaction mixture. A structure based on an infinite chain and a trimeric supermolecule have been obtained starting from a 1 ∶ 1 MINC/DITFB stoichiometry or by using a large excess of MINC, respectively. While the former structure shows simultaneous …

ChemistrySupramolecular chemistryGeneral ChemistryCondensed Matter PhysicsSupermoleculeBlock (periodic table)CrystalCrystallographyChain (algebraic topology)MINCHalogenGeneral Materials SciencecomputerStoichiometrycomputer.programming_language
researchProduct

Reversible Supracolloidal Self-Assembly of Cobalt Nanoparticles to Hollow Capsids and Their Superstructures

2017

| openaire: EC/FP7/291364/EU//MIMEFUN The synthesis and spontaneous, reversible supracolloidal hydrogen bond-driven self-assembly of cobalt nanoparticles (CoNPs) into hollow shell-like capsids and their directed assembly to higher order superstructures is presented. CoNPs and capsids form in one step upon mixing dicobalt octacarbonyl (Co2CO8) and p-aminobenzoic acid (pABA) in 1,2-dichlorobenzene using heating-up synthesis without additional catalysts or stabilizers. This leads to pABA capped CoNPs (core ca. 5nm) with a narrow size distribution. They spontaneously assemble into tunable spherical capsids (d≈50-200nm) with a few-layered shells, as driven by inter-nanoparticle hydrogen bonds th…

Hydrogen bondingta221Nanoparticlechemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundColloidCapsidsDicobalt octacarbonylta116ta114ChemistryHydrogen bondColloidal self-assemblyGeneral ChemistryGeneral Medicine021001 nanoscience & nanotechnology0104 chemical sciencesSolventCrystallographyElectron tomographycobalt nanoparticlesMagnetic nanoparticlesnanoparticlesSelf-assembly0210 nano-technologyCobaltSuperparamagnetismAngewandte Chemie
researchProduct

Synthesis and characterization of chiral azobenzene dye functionalized Janus dendrimers

2008

Abstract Eight bischromophoric bisMPA based polyester Janus dendrimers emanating from a pentaerythritol core were synthesized and their properties evaluated. 4-((4-(Ethyl(2-(2-(6-methoxynaphthalen-2-yl)propanoyloxy)ethyl)amino)-phenyl)diazenyl)-benzoic acid and 4-((4-(ethyl(2-(2-(6-methoxynaphthalen-2-yl)propanoyloxy)-ethyl)-amino)phenyl)diazenyl)-3-nitrobenzoic acid were attached to the dendritic polyester skeleton to make chiral dendrimers up to the second generation. The structures and the purity of the molecules were verified with 1H NMR, 13C NMR, ESI TOF mass spectrometry, and elemental analysis. Spectral properties were evaluated with UV–vis and CD spectrometer. The compounds displaye…

Thermogravimetric analysisOrganic ChemistryCarbon-13 NMRBiochemistryPentaerythritolchemistry.chemical_compoundDifferential scanning calorimetryAzobenzenechemistryDendrimerDrug DiscoveryPolymer chemistryProton NMREnantiomeric excessTetrahedron
researchProduct

Synthesis and structural studies on Ni(II) dithiocarbamates : Exploring intramolecular Ni···H-C interactions

2017

Abstract Five new Ni(II) dithiocarbamates with NiS4, NiS2PN and NiS2PCl coordination spheres, viz. [Ni(bupmbzdtc)2] (1), [Ni(bupmbzdtc)(PPh3)(NCS)] (2), [Ni(bupmbzdtc)(PPh3)Cl] (3), [Ni(4-dpmpzdtc)(PPh3)Cl] (4) and [Ni(pbbzbudtc)(PPh3)(NCS)] (5), where bupmbzdtc = N-butyl(p-methylbenzyl)dithiocarbamato anion, 4-dpmpzdtc = 4-(diphenylmethyl)piperazinecarbodithioato anion, pbbzbudtc = N-(p-bromobenzyl)butyl-dithiocarbamato anion and PPh3 = triphenylphosphine, were synthesized and characterized by UV, IR, NMR and single crystal X-ray diffraction methods. Spectral results suggest a square planar geometry around the Ni(II) metal center for all the synthesized complexes. Single crystal X-ray stru…

chemistry.chemical_classificationC-H···Ni interaction010405 organic chemistryChemistryInorganic chemistrySolid-state010402 general chemistry01 natural sciencesNMR0104 chemical sciencesIonInorganic ChemistryMetalCrystallographydithiocarbamateIntramolecular forcevisual_artMaterials Chemistryvisual_art.visual_art_mediumPhysical and Theoretical ChemistryDithiocarbamateX-ray structural analysisSingle crystalta116Polyhedron
researchProduct

Poly[[μ-N,N′-bis(2-hydroxyethyl)-N,N,N′,N′-tetramethylpropane-1,3-diaminium-κ2O:O′]tetra-μ-bromido-dibromidodimanganese(II)]

2012

The asymmetric unit of the title three-dimensional coordination polymer, [Mn2Br6(C11H28N2O2)] n , consists of one Mn(II) cation, half of a dicationic N,N'-bis-(2-hy-droxy-eth-yl)-N,N,N',N'-tetra-methyl-propane-1,3-diaminium ligand (L) (the other half being generated by a twofold rotation axis), and three bromide ions. The Mn(II) cation is coordinated by a single L ligand via the hy-droxy O atom and by five bromide ions, resulting in a distorted octa-hedral MnBr5O coordination geometry. Four of the bromide ions are bridging to two adjacent Mn(II) atoms, thereby forming polymeric chains along the a and b axes. The L units act as links between neighbouring Mn-(μ-Br)2-Mn chains, also forming a …

Metal-Organic PapersbiologyCoordination polymerHydrogen bondGeneral ChemistryCondensed Matter Physicsbiology.organism_classificationBioinformaticschemistry.chemical_compoundCrystallographychemistryPropaneAtomTetraGeneral Materials Scienceta116Coordination geometryBromide ionsActa Crystallographica Section E Structure Reports Online
researchProduct

Crystal structures and thermal behavior of bis[dibenzyldimethylammonium]CuBr4, bis[dibenzyldimethylammonium]CuCl4 and bis[dimethyldi(2-phenylethyl)am…

2006

Abstract Bis[dibenzyldimethylammonium]CuBr4, bis[dibenzyldimethylammonium]CuCl4 and bis[dimethyldi(2-phenylethyl)ammonium]CuBr4 were crystallized from acetonitrile and/or dilute HX solutions. Five different kinds of single crystals were obtained. In the case of bis[dibenzyldimethylammonium]CuX4 (X=Br or Cl), the acetonitrile molecules cocrystallized into the crystal structure when acetonitrile solution was used. As a result, the isomorphic structures of Bis[dibenzyldimethylammonium]CuX4·0.5 CH3CN (X=Br or Cl) in monoclinic space group P21/n were obtained. When a dilute HX solution was used, the bis[dibenzyldimethylammonium]CuX4 (X=Br or Cl) crystallized without solvent molecules. The formed…

ChemistryOrganic ChemistryInorganic chemistryCrystal structureTriclinic crystal systemAnalytical ChemistryInorganic ChemistrySolventchemistry.chemical_compoundCrystallographyMelting pointThermal analysisAcetonitrileSpectroscopyPowder diffractionMonoclinic crystal systemJournal of Molecular Structure
researchProduct

Stability of Rare-Earth Oxychloride Phases: Bond Valence Study

2002

Abstract The crystal structures of the tetragonal rare earth ( RE ) oxychlorides, RE OCl ( RE =La–Nd, Sm–Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P 4/ nmm , No. 129, Z =2) is stable for all but Er–Lu oxychlorides, which possess a hexagonal structure. The tetragonal structure consists of alternating layers of ( RE O) n n + complex cations and X n − anions, where the rare earth is coordinated to four oxygens and four plus one chlorines in a monocapped tetragonal antiprism arrangement. The Rietveld analyses yielded a coherent series of structural parameters. Preferred orientation an…

Valence (chemistry)Ionic radiusRietveld refinementChemistryStereochemistryCrystal structureCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsInorganic ChemistryTetragonal crystal systemCrystallographyMolecular geometryCovalent bondMaterials ChemistryCeramics and CompositesPhysical and Theoretical ChemistryPowder diffractionJournal of Solid State Chemistry
researchProduct

Synthesis of self-assembled mesoporous 3D In2O3 hierarchical micro flowers composed of nanosheets and their electrochemical properties

2018

This report describes the methodology for the fabrication of mesoporous In2O3 microflowers by hydrothermal and calcination procedures in which In(OH)3/In2S3 acts as an intermediate. Both In2O3 and its precursor were analyzed with scanning electron microscopy, energy dispersive X-ray spectrophotometry, transmission electron microscopy and powder X-ray diffraction. BET surface area, pore size and pore volume analyses were also carried out. Electron microscopy images clearly evidence the self-assembly of 2D nanosheets into the micro flower structure. The mechanism of self-assembly and calcination is reported. Electrochemical properties of the synthesized In2O3 micro flowers were studied.

FabricationMaterials scienceScanning electron microscopeGeneral Chemical Engineering02 engineering and technologymethodology for the fabrication010402 general chemistry01 natural sciencesHydrothermal circulationlaw.inventionnanorakenteetlawCalcinationmesoporous In2O3 micro flowersta116kemiallinen synteesiGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesmikrorakenteetChemical engineeringTransmission electron microscopyElectron microscope0210 nano-technologyMesoporous materialBET theoryRSC Advances
researchProduct

Syntheses and structural study of bile acid amidoalcohols.

2008

Preparation, structural and thermoanalytical characterization of fourteen N-hydroxyalkyl 5beta-cholan-24-amides have been performed in this study. The utilized techniques include liquid state and CP-MAS 13C NMR spectroscopy, thermogravimetry, differential scanning calorimetry, and also powder and single crystal X-ray crystallography. The results were discussed and compared to each other and also to previous findings on similar compounds. One pure hydrate form was obtained. Six new single crystal structures were determined, including one hydrated chloroform solvate. Decomposition temperatures were found to correlate with the side chain length, and the number of the hydroxyl groups. The spati…

Models MolecularSpectrometry Mass Electrospray IonizationMagnetic Resonance SpectroscopyClinical BiochemistryCalorimetryCrystallography X-RayBiochemistryBile Acids and Saltschemistry.chemical_compoundEndocrinologyDifferential scanning calorimetrySide chainMolecular BiologyPharmacologyChloroformCalorimetry Differential ScanningMolecular StructureChemistryOrganic ChemistryNuclear magnetic resonance spectroscopyAmidesThermogravimetryCrystallographyAlcoholsHydrateSingle crystalSteroids
researchProduct

Thermal expansion and magnetic properties of benzoquinone-bridged dinuclear rare-earth complexes.

2017

The synthesis and structural characterization of two benzoquinone-bridged dinuclear rare-earth complexes [BQ(MCl2·THF3)2] (BQ = 2,5-bisoxide-1,4-benzoquinone; M = Y (1), Dy (2)) are described. Of these reported metal complexes, the dysprosium analogue 2 is the first discrete bridged dinuclear lanthanide complex in which both metal centres reside in pentagonal bipyramidal environments. Interestingly, both complexes undergo significant thermal expansion upon heating from 120 K to 293 K as illustrated by single-crystal X-ray and powder diffraction experiments. AC magnetic susceptibility measurements reveal that 2 does not show the slow relation of magnetization in zero dc field. The absent of …

Lanthanidemagneettiset ominaisuudetStereochemistrychemistry.chemical_element010402 general chemistry01 natural sciencesInorganic ChemistryMagnetizationPentagonal bipyramidal molecular geometryAb initio quantum chemistry methodsheat expansioncoordination complexesrare earth metalsta116010405 organic chemistrykompleksiyhdisteetharvinaiset maametallitBenzoquinoneMagnetic susceptibility0104 chemical sciencesCrystallographychemistryDysprosiummagnetic propertiesPowder diffractionlämpölaajeneminenDalton transactions (Cambridge, England : 2003)
researchProduct

CCDC 2054859: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591

Space GroupCrystallographyCrystal Systembis{[(26-dimethylphenyl)azanylidyne]methyl}-bis(iodo)-palladium iodineCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1429013: Experimental Crystal Structure Determination

2016

Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(butyl(4-methylbenzyl)carbamodithioato)-isothiocyanato-triphenylphosphine-nickel(ii)Experimental 3D Coordinates
researchProduct

CCDC 1821333: Experimental Crystal Structure Determination

2018

Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F

Space GroupCrystallographybis(2-bromo-5-fluoropyridine)-dichloro-copper(ii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1404481: Experimental Crystal Structure Determination

2016

Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552

Space GroupCrystallographyCrystal SystemCrystal Structure(4'-chloro-22':6'2''-terpyridine)-iodo-trimethyl-platinum hemikis(1245-tetrafluoro-36-diiodobenzene) chloroform solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1901279: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

(acetonitrile)-bis(nitrato)-bis(4-iodopyridine)-copper(ii)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833434: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal Systemcatena-[(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-neodymium bromide trifluoromethanesulfonate hydrate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 947893: Experimental Crystal Structure Determination

2014

Related Article: Manu Lahtinen, Jyothi Kudva, Poornima Hegde, Krishna Bhat, Erkki Kolehmainen, Nonappa, Venkatesh, Damodara Naral|2014|J.Mol.Struct.|1060|280|doi:10.1016/j.molstruc.2013.12.063

N-(4-(Phenylsulfamoyl)phenyl)acetamideSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 947892: Experimental Crystal Structure Determination

2014

Related Article: Manu Lahtinen, Jyothi Kudva, Poornima Hegde, Krishna Bhat, Erkki Kolehmainen, Nonappa, Venkatesh, Damodara Naral|2014|J.Mol.Struct.|1060|280|doi:10.1016/j.molstruc.2013.12.063

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates4-Amino-N-phenylbenzenesulfonamide
researchProduct

CCDC 1424396: Experimental Crystal Structure Determination

2016

Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(bis(diphenylphosphorothioyl)methanethiolato)-nickel(ii)Experimental 3D Coordinates
researchProduct

CCDC 913158: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(26-bis((di-t-butylphosphino)methyl)phenyl)-bromo-palladiumExperimental 3D Coordinates
researchProduct

CCDC 1424395: Experimental Crystal Structure Determination

2016

Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J

bis(bis(diphenylphosphorothioyl)methanethiolato)-nickel(ii) toluene solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1863396: Experimental Crystal Structure Determination

2018

Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-(3H-1235-dithiadiazol-4-yl)-1-methylpyridin-1-ium radical trifluoromethanesulfonateExperimental 3D Coordinates
researchProduct

CCDC 2098810: Experimental Crystal Structure Determination

2021

Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416

Space GroupCrystallographyCrystal System4-pyridyl-substituted 1235-dithiadiazolyl radicalCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1842357: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-((mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxypyridin-1-ium))-(mu-trifluoromethanesulfonato)-neodymium dibromide dihydrate)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833432: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal Systemcatena-[(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-neodymium bromide trifluoromethanesulfonate undecahydrate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1404479: Experimental Crystal Structure Determination

2016

Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552

(4'-chloro-22':6'2''-terpyridine)-iodo-trimethyl-platinumSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1938867: Experimental Crystal Structure Determination

2020

Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters5111723-tetramethyl-C-ethylcalix[4]resorcinarene benzoic acidExperimental 3D Coordinates
researchProduct

CCDC 1938197: Experimental Crystal Structure Determination

2019

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

Space GroupCrystallographyoctadecakis(mu-2-phenylethane-1-thiolato)-mercury-tetracosa-goldCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1821338: Experimental Crystal Structure Determination

2018

Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatesdichloro-bis(3-iodopyridine)-copper(ii)
researchProduct

CCDC 1023710: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

Space GroupCrystallography11'-octane-18-diylbis(4-diiodaniumyl-14-diazoniabicyclo[2.2.2]octane) octaiodideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833433: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxypyridin-1-ium) 1-({35-bis[(4-carboxypyridin-1-ium-1-yl)methyl]-246-trimethylphenyl}methyl)pyridin-1-ium-4-carboxylate pentabromide tetrahydrateExperimental 3D Coordinates
researchProduct

CCDC 1554863: Experimental Crystal Structure Determination

2017

Related Article: Lotta Turunen, Anssi Peuronen, Samu Forsblom, Elina Kalenius, Manu Lahtinen and Kari Rissanen|2017|Chem.-Eur.J.|23|11714|doi:10.1002/chem.201702655

Space GroupCrystallographyCrystal SystemCrystal Structurebis(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(1H-imidazole))-tri-silver(i) tris(hexafluorophosphate) acetonitrile solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1938194: Experimental Crystal Structure Determination

2019

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[hexatriacontakis(mu-butane-1-thiolato)-di-cadmium-octatetraconta-gold]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 990215: Experimental Crystal Structure Determination

2014

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2015|Inorg.Chim.Acta|425|239|doi:10.1016/j.ica.2014.09.016

Space GroupCrystallographybis(4-(diphenylmethyl)piperazine-1-carbodithioato)-nickel(ii) chloroform solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2149492: Experimental Crystal Structure Determination

2022

Related Article: Ida Mattsson, Manu Lahtinen, Ruzal Sitdikov, Bianca Wank, Tiina Saloranta-Simell, Reko Leino|2022|Carbohydr.Res.|518|108596|doi:10.1016/j.carres.2022.108596

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-(14-dioxaspiro[4.5]decan-2-yl)-2-(3-propyl-14-dioxaspiro[4.5]decan-2-yl)ethane-12-diolExperimental 3D Coordinates
researchProduct

CCDC 1901284: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographyCrystal SystemCrystal Structurebis(3-chloropyridine)-bis(nitrato)-copper(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1821334: Experimental Crystal Structure Determination

2018

Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F

Space GroupCrystallographydichloro-bis(2-bromo-5-chloropyridine)-copper(ii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1938193: Experimental Crystal Structure Determination

2019

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

Space GroupCrystallographycatena-[hexatriacontakis(mu-butane-1-thiolato)-di-mercury-octatetraconta-gold]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1007104: Experimental Crystal Structure Determination

2014

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2015|Inorg.Chim.Acta|425|239|doi:10.1016/j.ica.2014.09.016

Space GroupCrystallographyCrystal SystemCrystal Structure(butyl(4-chlorobenzyl)carbamodithioato)-thiocyanato-triphenylphosphine-nickel(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1533110: Experimental Crystal Structure Determination

2017

Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters223344556677888-pentadecafluoro-N-[4-([1222:2632-terpyridin]-24-yl)phenyl]octanamideExperimental 3D Coordinates
researchProduct

CCDC 1554861: Experimental Crystal Structure Determination

2017

Related Article: Lotta Turunen, Anssi Peuronen, Samu Forsblom, Elina Kalenius, Manu Lahtinen and Kari Rissanen|2017|Chem.-Eur.J.|23|11714|doi:10.1002/chem.201702655

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetrakis(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(14-diazabicyclo[2.2.2]octan-1-ium))-hexa-silver(i) octadecakis(hexafluorophosphate) methanol acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 1833439: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographycatena-((mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-ytterbium tribromide heptahydrate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2158304: Experimental Crystal Structure Determination

2023

Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters[N2N2-bis{[35-di-t-butyl-2-oxyphenyl]methyl}-N-[26-di-isopropylphenyl]glycinamidato]-dioxo-molybdenum(vi) dimethyl sulfoxide solvateExperimental 3D Coordinates
researchProduct

CCDC 1023705: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

Space GroupCrystallography11'-hexane-16-diylbis(4-diiodaniumyl-14-diazoniabicyclo[2.2.2]octane) bis(pentaiodide) tris(diiodo)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 947895: Experimental Crystal Structure Determination

2014

Related Article: Manu Lahtinen, Jyothi Kudva, Poornima Hegde, Krishna Bhat, Erkki Kolehmainen, Nonappa, Venkatesh, Damodara Naral|2014|J.Mol.Struct.|1060|280|doi:10.1016/j.molstruc.2013.12.063

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersN-(4-((3-Chlorophenyl)sulfamoyl)phenyl)benzamideExperimental 3D Coordinates
researchProduct

CCDC 1938198: Experimental Crystal Structure Determination

2019

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

Space GroupCrystallographyoctadecakis(mu-2-phenylethane-1-thiolato)-cadmium-tetracosa-goldCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1938870: Experimental Crystal Structure Determination

2020

Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220

Space GroupCrystallography5111723-tetramethyl-C-ethylcalix[4]resorcinarene pyridinium cyclopropanecarboxylate hemikis(cyclopropanecarboxylic acid) hemihydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1885475: Experimental Crystal Structure Determination

2019

Related Article: Morten K. Peters, Sebastian Hamer, Torben Jäkel, Fynn Röhricht, Frank D. Sönnichsen, Carolina von Essen, Manu Lahtinen, Christian Naether, Kari Rissanen, Rainer Herges|2019|Inorg.Chem.|58|5265|doi:10.1021/acs.inorgchem.9b00349

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates3140-bis(26-dichlorophenyl)-8111619-tetraoxa-45464748-tetraazaoctacyclo[24.9.9.12730.13235.13639.14144.027.02025]octatetraconta-1(35)24620222426283032(47)333638404244-heptadecaen-13-yne-1215-dione dichloromethane solvate
researchProduct

CCDC 2149491: Experimental Crystal Structure Determination

2022

Related Article: Ida Mattsson, Manu Lahtinen, Ruzal Sitdikov, Bianca Wank, Tiina Saloranta-Simell, Reko Leino|2022|Carbohydr.Res.|518|108596|doi:10.1016/j.carres.2022.108596

Space GroupCrystallography1-(14-dioxaspiro[4.5]decan-2-yl)-2-[3-(prop-2-en-1-yl)-14-dioxaspiro[4.5]decan-2-yl]ethane-12-diolCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1938871: Experimental Crystal Structure Determination

2020

Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220

Space GroupCrystallographypyridinium acetate 281420-tetraethyl-5111723-tetramethylcalix(4)resorcinarene methanol solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833445: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographycatena-((mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-europium bromide trifluoromethanesulfonate hydrate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1023709: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters11'-octane-18-diylbis(4-aza-1-azoniabicyclo[2.2.2]octane) bis(triiodide)Experimental 3D Coordinates
researchProduct

CCDC 1894870: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-(acetato)-tri-neodymium bis(bromide) heptahydrate]Experimental 3D Coordinates
researchProduct

CCDC 1901282: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(4-chloropyridine)-bis(nitrato)-copper(ii)Experimental 3D Coordinates
researchProduct

CCDC 1533112: Experimental Crystal Structure Determination

2017

Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates223344556677888-pentadecafluoro-N-[4-([1222:2632-terpyridin]-24-yl)phenyl]octanamide tetrahydrofuran solvate
researchProduct

CCDC 913147: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(26-bis((di-t-butylphosphino)methyl)phenyl)-bromo-palladiumExperimental 3D Coordinates
researchProduct

CCDC 913151: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(26-bis((di-t-butylphosphino)methyl)phenyl)-bromo-palladiumExperimental 3D Coordinates
researchProduct

CCDC 2171093: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(1-ethyl-3-iodopyridin-1-ium) iodide hexafluorophosphateExperimental 3D Coordinates
researchProduct

CCDC 2098809: Experimental Crystal Structure Determination

2021

Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416

Space GroupCrystallographyCrystal System4-pyridyl-substituted 1235-dithiadiazolyl radicalCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2171080: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallographyCrystal SystemCrystal Structure1-ethyl-3-iodopyridin-1-ium bis(1-ethyl-3-iodopyridin-1-ium) triiodideCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 913154: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(26-bis((di-t-butylphosphino)methyl)phenyl)-bromo-palladiumExperimental 3D Coordinates
researchProduct

CCDC 1901276: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographyCrystal System(acetonitrile)-bis(3-bromopyridine)-bis(nitrato)-copper(ii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2001488: Experimental Crystal Structure Determination

2020

Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu-bromo)-(mu-6-chloropyrazin-2-amine)-copper)Experimental 3D Coordinates
researchProduct

CCDC 996586: Experimental Crystal Structure Determination

2014

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpaa|2014|Polyhedron|81|588|doi:10.1016/j.poly.2014.06.059

Space GroupCrystallographyCrystal Systembis(benzyl(butyl)carbamodithioato)-nickel(ii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 927661: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal System(26-bis((di-t-butylphosphino)methyl)phenyl)-chloro-palladium(ii) unknown solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1821336: Experimental Crystal Structure Determination

2018

Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F

bis(2-bromo-5-iodopyridine)-dichloro-copper(ii)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 913161: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

(26-bis((di-t-butylphosphino)methyl)phenyl)(iodo)palladiumSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1863394: Experimental Crystal Structure Determination

2018

Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416

4-(3H-1235-diselenadiazol-4-yl)pyridine radicalSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 990214: Experimental Crystal Structure Determination

2014

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2015|Inorg.Chim.Acta|425|239|doi:10.1016/j.ica.2014.09.016

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(4-(diphenylmethyl)piperazine-1-carbodithioato)-thiocyanato-triphenylphosphine-nickel(ii)Experimental 3D Coordinates
researchProduct

CCDC 996587: Experimental Crystal Structure Determination

2014

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpaa|2014|Polyhedron|81|588|doi:10.1016/j.poly.2014.06.059

Space GroupCrystallography(benzyl(butyl)carbamodithioato)-(isothiocyanato)-(triphenylphosphine)-nickel(ii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1901283: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographyCrystal SystemCrystal Structurebis(nitrato)-bis(4-chloropyridine)-acetonitrile-copper(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 913150: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(26-bis((di-t-butylphosphino)methyl)phenyl)-bromo-palladiumExperimental 3D Coordinates
researchProduct

CCDC 913155: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal Structure(26-bis((di-t-butylphosphino)methyl)phenyl)-bromo-palladium ethanol solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2211278: Experimental Crystal Structure Determination

2023

Related Article: Anssi Peuronen, Anni Taponen, Elina Kalenius, Ari Lehtonen, Manu Lahtinen|2023|Angew.Chem.,Int.Ed.|62|e202215689|doi:10.1002/anie.202215689

Space GroupCrystallographytetrakis(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(14-diazabicyclo[2.2.2]octan-1-ium))-hexadecakis(mu-iodo)-dodeca-copper(i) octaiodide acetonitrile-diiodo-copper(i) tribromomethane unknown solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2001484: Experimental Crystal Structure Determination

2020

Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-((mu-bromo)-(3-chloropyrazin-2-amine)-copper)
researchProduct

CCDC 947464: Experimental Crystal Structure Determination

2013

Related Article: Anssi Peuronen, Esa Lehtimäki, and Manu Lahtinen|2013|Cryst.Growth Des.|13|4615|doi:10.1021/cg401246n

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters11'1''-((246-trimethylbenzene-135-triyl)tris(methylene))tris(4-aza-1-azoniabicyclo[2.2.2]octane) potassium oxonium pentakis(hexafluorophosphate) hemihydrate unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1901278: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(acetonitrile)-bis(4-bromopyridine)-bis(nitrato)-copper(ii)Experimental 3D Coordinates
researchProduct

CCDC 1406085: Experimental Crystal Structure Determination

2016

Related Article: Tiina Saloranta, Anssi Peuronen, Johannes M. Dieterich, Janne Ruokolainen, Manu Lahtinen, Reko Leino|2016|Cryst.Growth Des.|16|655|doi:10.1021/acs.cgd.5b01135

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersnon-8-ene-123456-hexolExperimental 3D Coordinates
researchProduct

CCDC 1027704: Experimental Crystal Structure Determination

2016

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2016|J.Mol.Struct.|1108|195|doi:10.1016/j.molstruc.2015.11.076

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterschloro-(4-(diphenylmethyl)piperazine-1-carbodithioato)-triphenylphosphine-palladium(ii) chloroform solvateExperimental 3D Coordinates
researchProduct

CCDC 913149: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(26-bis((di-t-butylphosphino)methyl)phenyl)-bromo-palladiumExperimental 3D Coordinates
researchProduct

CCDC 2171079: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallography1-ethyl-3-iodopyridin-1-ium iodideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 913148: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(26-bis((di-t-butylphosphino)methyl)phenyl)-bromo-palladiumExperimental 3D Coordinates
researchProduct

CCDC 1833437: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-((mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-samarium bromide trifluoromethanesulfonate octahydrate)
researchProduct

CCDC 1901272: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(2-chloropyridine)-bis(nitrato)-copper(ii)Experimental 3D Coordinates
researchProduct

CCDC 1901285: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(nitrato)-bis(2-iodopyridine)-copper(ii)Experimental 3D Coordinates
researchProduct

CCDC 978171: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Samu Forsblom, Manu Lahtinen|2014|Chem.Commun.|50|5469|doi:10.1039/C3CC49663E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetrakis(mu~3~-11'1''-(benzene-135-triyltrimethanediyl)tris(4-aza-1-azoniabicyclo[2.2.2]octane))-octadecakis(acetonitrile)-hexa-copper tetracosakis(hexafluorophosphate) acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 2157985: Experimental Crystal Structure Determination

2023

Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034

Space GroupCrystallographyCrystal SystemCrystal Structure[N2N2-bis{[35-di-t-butyl-2-oxyphenyl]methyl}-N-methyl-N-phenylglycinamidato]-dioxo-molybdenum(vi)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1884544: Experimental Crystal Structure Determination

2019

Related Article: Morten K. Peters, Sebastian Hamer, Torben Jäkel, Fynn Röhricht, Frank D. Sönnichsen, Carolina von Essen, Manu Lahtinen, Christian Naether, Kari Rissanen, Rainer Herges|2019|Inorg.Chem.|58|5265|doi:10.1021/acs.inorgchem.9b00349

Space GroupCrystallography3645-bis(26-dichlorophenyl)-8122024-tetraoxa-15161750515253-heptaazanonacyclo[29.9.9.13235.13740.14144.14649.027.01418.02530]tripentaconta-1(40)246141725272931333537(52)384143454749-nonadecaene-1319-dione di-isopropyl ether solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1956436: Experimental Crystal Structure Determination

2020

Related Article: Ida Mattsson, Ruzal Sitdikov, Andreas C. M. Gunell, Manu Lahtinen, Tiina Saloranta-Simell, Reko Leino|2020|RSC Advances|10|3960|doi:10.1039/C9RA10378C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(2R3R4R5R6S)-7-(1-benzyl-1H-123-triazol-4-yl)heptane-123456-hexaolExperimental 3D Coordinates
researchProduct

CCDC 2211279: Experimental Crystal Structure Determination

2023

Related Article: Anssi Peuronen, Anni Taponen, Elina Kalenius, Ari Lehtonen, Manu Lahtinen|2023|Angew.Chem.,Int.Ed.|62|e202215689|doi:10.1002/anie.202215689

11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(14-diazabicyclo[2.2.2]octan-1-ium) iodide bis(bis(trifluoromethanesulfonyl)azanide) acetonitrile solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2171088: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallography1-ethyl-3-iodopyridin-1-ium iodideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1863392: Experimental Crystal Structure Determination

2018

Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates3-(3H-1235-diselenadiazol-4-yl)pyridine radical
researchProduct

CCDC 947462: Experimental Crystal Structure Determination

2013

Related Article: Anssi Peuronen, Esa Lehtimäki, and Manu Lahtinen|2013|Cryst.Growth Des.|13|4615|doi:10.1021/cg401246n

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters11'1''-(Benzene-135-triyltris(methylene))tris(4-aza-1-azoniabicyclo[2.2.2]octane) tetrakis(hexafluorophosphate)-potassiumExperimental 3D Coordinates
researchProduct

CCDC 2157989: Experimental Crystal Structure Determination

2023

Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034

Space GroupCrystallography[N-benzyl-N2N2-bis{[35-di-t-butyl-2-oxyphenyl]methyl}glycinamidato]-dioxo-tungsten(vi)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 913160: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(26-bis((di-t-butylphosphino)methyl)phenyl)-bromo-palladiumExperimental 3D Coordinates
researchProduct

CCDC 1863395: Experimental Crystal Structure Determination

2018

Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416

Space GroupCrystallographyCrystal System3-(1235-dithiadiazol-1-ium-4-yl)-1-methylpyridin-1-ium bis(trifluoromethanesulfonate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833446: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-penta-aqua-di-samarium trifluoromethanesulfonate bromide hydrate)Experimental 3D Coordinates
researchProduct

CCDC 1821329: Experimental Crystal Structure Determination

2018

Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-chloro)-dichloro-tetrakis(5-bromo-2-chloropyridine)-di-copper(ii)Experimental 3D Coordinates
researchProduct

CCDC 1986213: Experimental Crystal Structure Determination

2021

Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531

Space GroupCrystallographyCrystal SystemCrystal Structurebis{22'-[cyclohexa-35-diene-12-diylidenebis(azanylylidene)]bis(46-di-t-butylphenolato)}-titanium(iv) acetonitrile solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2171091: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallographyCrystal SystemCrystal Structure11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(3-iodopyridin-1-ium) tribromide methanol solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2054860: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591

Space GroupCrystallographyCrystal SystemCrystal Structurebis{N-(26-dimethylphenyl)cyano}-bis(iodo)-platinumCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833443: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographycatena-((mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-terbium bromide trifluoromethanesulfonate hydrate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2171089: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(3-iodopyridin-1-ium) bromide iodidieExperimental 3D Coordinates
researchProduct

CCDC 1842358: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographycatena-((mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxypyridin-1-ium))-diaqua-neodymium trinitrate hexahydrate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1404485: Experimental Crystal Structure Determination

2016

Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersiodo-trimethyl-(4'-(4-methylphenyl)-22':6'2''-terpyridine)-platinum bis(12345-pentafluoro-6-iodobenzene)Experimental 3D Coordinates
researchProduct

CCDC 1986216: Experimental Crystal Structure Determination

2021

Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(24-di-t-butyl-6-[{6-[(35-di-t-butyl-2-hydroxyphenyl)imino]cyclohexa-24-dien-1-ylidene}amino]phenolato)-{1-[(35-di-t-butyl-2-oxidophenyl)azanidyl]-6-[(35-di-t-butyl-2-oxidophenyl)imino]cyclohexa-24-dien-1-yl radical}-vanadiumExperimental 3D Coordinates
researchProduct

CCDC 2171092: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallographyCrystal SystemCrystal Structure1-{[3-(bromomethyl)phenyl]methyl}-3-iodopyridin-1-ium bromideCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2001485: Experimental Crystal Structure Determination

2020

Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu-bromo)-(5-chloropyrazin-2-amine)-copper)Experimental 3D Coordinates
researchProduct

CCDC 1822427: Experimental Crystal Structure Determination

2018

Related Article: Ida Mattsson, Manu Lahtinen, Anssi Peuronen, Abhijit Sau, Andreas Gunell, Tiina Saloranta-Simell, Reko Leino|2018|Cryst.Growth Des.|18|3151|doi:10.1021/acs.cgd.8b00263

Space GroupCrystallographyCrystal SystemCrystal Structurenon-8-yne-123456-hexolCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2171084: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters11'-[14-phenylenebis(methylene)]bis(3-iodopyridin-1-ium) dibromideExperimental 3D Coordinates
researchProduct

CCDC 1822426: Experimental Crystal Structure Determination

2018

Related Article: Ida Mattsson, Manu Lahtinen, Anssi Peuronen, Abhijit Sau, Andreas Gunell, Tiina Saloranta-Simell, Reko Leino|2018|Cryst.Growth Des.|18|3151|doi:10.1021/acs.cgd.8b00263

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersnon-8-ene-123456-hexolExperimental 3D Coordinates
researchProduct

CCDC 1833435: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographycatena-[(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-triaqua-neodymium tris(trifluoromethanesulfonate) heptahydrate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1938873: Experimental Crystal Structure Determination

2020

Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220

Space GroupCrystallographyCrystal SystemCrystal Structure5111723-tetramethyl-C-ethylcalix[4]resorcinarene pyridine solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1404484: Experimental Crystal Structure Determination

2016

Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552

Space GroupCrystallographyiodo-trimethyl-(4'-(4-methylphenyl)-22':6'2''-terpyridine)-platinumCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2001490: Experimental Crystal Structure Determination

2020

Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045

Space GroupCrystallographycatena-((mu-bromo)-(36-dichloropyrazin-2-amine)-copper)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 947463: Experimental Crystal Structure Determination

2013

Related Article: Anssi Peuronen, Esa Lehtimäki, and Manu Lahtinen|2013|Cryst.Growth Des.|13|4615|doi:10.1021/cg401246n

tetrakis(11'1''-(Benzene-135-triyltris(methylene))tris(4-aza-1-azoniabicyclo[2.2.2]octane)) tris(oxonium) pentadecakis(hexafluorophosphate) nonahydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1938195: Experimental Crystal Structure Determination

2019

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[hexatriacontakis(mu-butane-1-thiolato)-di-cadmium-octatetraconta-gold]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1863398: Experimental Crystal Structure Determination

2018

Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters4-(3H-1235-dithiadiazol-4-yl)-1-methylpyridin-1-ium radical trifluoromethanesulfonateExperimental 3D Coordinates
researchProduct

CCDC 1554864: Experimental Crystal Structure Determination

2017

Related Article: Lotta Turunen, Anssi Peuronen, Samu Forsblom, Elina Kalenius, Manu Lahtinen and Kari Rissanen|2017|Chem.-Eur.J.|23|11714|doi:10.1002/chem.201702655

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(1H-imidazole))-tri-iodonium tris(hexafluorophosphate) acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 2157988: Experimental Crystal Structure Determination

2023

Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters[N2N2-bis{[35-di-t-butyl-2-oxyphenyl]methyl}-N-methyl-N-phenylglycinamidato]-dioxo-tungsten(vi) methanol solvateExperimental 3D Coordinates
researchProduct

CCDC 1938868: Experimental Crystal Structure Determination

2020

Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220

Space GroupCrystallographyCrystal SystemCrystal Structure5111723-tetramethyl-C-ethylcalix[4]resorcinarene pyridinium cyclohexanecarboxylateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833442: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-neodymium tribromide heptahydrate)Experimental 3D Coordinates
researchProduct

CCDC 1821328: Experimental Crystal Structure Determination

2018

Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-chloro)-dichloro-tetrakis(25-dichloropyridine)-di-copper(ii)Experimental 3D Coordinates
researchProduct

CCDC 2211276: Experimental Crystal Structure Determination

2023

Related Article: Anssi Peuronen, Anni Taponen, Elina Kalenius, Ari Lehtonen, Manu Lahtinen|2023|Angew.Chem.,Int.Ed.|62|e202215689|doi:10.1002/anie.202215689

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetrakis(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(14-diazabicyclo[2.2.2]octan-1-ium))-hexadecakis(mu-iodo)-dodeca-copper(i) hemikis(triiodo-copper(i)) diiodo-copper hexakis(iodide) unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1833436: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographycatena-[(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-samarium bromide trifluoromethanesulfonate undecahydrate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1986214: Experimental Crystal Structure Determination

2021

Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(24-di-t-butyl-6-[{6-[(35-di-t-butyl-2-hydroxyphenyl)imino]cyclohexa-24-dien-1-ylidene}amino]phenolato)-{1-[(35-di-t-butyl-2-oxidophenyl)azanidyl]-6-[(35-di-t-butyl-2-oxidophenyl)imino]cyclohexa-24-dien-1-yl radical}-vanadiumExperimental 3D Coordinates
researchProduct

CCDC 2171081: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallographyCrystal System11'-[13-phenylenebis(methylene)]bis(3-iodopyridin-1-ium) dibromide hydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2171090: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallography11'-[13-phenylenebis(methylene)]bis(3-iodopyridin-1-ium) dibromide hemikis(3-iodopyridine)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2171087: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetracosakis(mu-trifluoromethanesulfonato)-bis(mu-aqua)-bis(mu-NN-dimethylformamide)-(mu-11'-[14-phenylenebis(methylene)]bis(3-iodopyridin-1-ium))-docosa-silver]Experimental 3D Coordinates
researchProduct

CCDC 1938872: Experimental Crystal Structure Determination

2020

Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220

5111723-tetramethyl-C-ethylcalix[4]resorcinarene pyridinium trifluoroacetate methanol solvate hemihydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1023706: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

Space GroupCrystallographyCrystal SystemCrystal Structure11'-hexane-16-diylbis(4-aza-1-azoniabicyclo[2.2.2]octane) bis(triiodide)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1938866: Experimental Crystal Structure Determination

2020

Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220

pyridinium trifluoroacetateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1821327: Experimental Crystal Structure Determination

2018

Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F

Space GroupCrystallographybis(mu-chloro)-dichloro-tetrakis(2-chloro-5-fluoropyridine)-di-copper(ii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1533113: Experimental Crystal Structure Determination

2017

Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F

Space GroupCrystallography223344556677888-pentadecafluoro-N-[4-([1222:2632-terpyridin]-24-yl)phenyl]octanamide chloroform solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 913159: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(26-bis((di-t-butylphosphino)methyl)phenyl)-bromo-palladiumExperimental 3D Coordinates
researchProduct

CCDC 2001487: Experimental Crystal Structure Determination

2020

Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045

Space GroupCrystallographycatena-(bis(mu-bromo)-(mu-5-chloropyrazin-2-amine)-di-copper)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2171086: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallographyCrystal System11'-[13-phenylenebis(methylene)]bis(3-iodopyridin-1-ium) dibromide hydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 996588: Experimental Crystal Structure Determination

2014

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpaa|2014|Polyhedron|81|588|doi:10.1016/j.poly.2014.06.059

Space GroupCrystallographyCrystal System(benzyl(butyl)carbamodithioato)-(cyano)-(triphenylphosphine)-nickel(ii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1938869: Experimental Crystal Structure Determination

2020

Related Article: S. Maryamdokht Taimoory, Kwaku Twum, Mohadeseh Dashti, Fangfang Pan, Manu Lahtinen, Kari Rissanen, Rakesh Puttreddy, John F. Trant, Ngong Kodiah Beyeh|2020|J.Org.Chem.|85|5884|doi:10.1021/acs.joc.0c00220

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters5111723-tetramethyl-C-ethylcalix[4]resorcinarene pyridinium cyclopentanecarboxylateExperimental 3D Coordinates
researchProduct

CCDC 1486829: Experimental Crystal Structure Determination

2016

Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(bis(diphenylphosphorothioyl)methanethiolato)-zinc(ii)Experimental 3D Coordinates
researchProduct

CCDC 1821330: Experimental Crystal Structure Determination

2018

Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F

Space GroupCrystallographybis(mu-chloro)-dichloro-tetrakis(2-chloro-5-iodopyridine)-di-copper(ii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1901271: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographyCrystal SystemCrystal Structurebis(2-bromopyridine)-bis(nitrato)-copper(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2054861: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591

Space GroupCrystallographyCrystal SystemCrystal Structurebis{N-(26-dimethylphenyl)cyano}-bis(iodo)-palladiumCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1863393: Experimental Crystal Structure Determination

2018

Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters4-(3H-1235-dithiadiazol-4-yl)pyridine radicalExperimental 3D Coordinates
researchProduct

CCDC 2129454: Experimental Crystal Structure Determination

2023

Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters[N-t-butyl-N2N2-bis{[35-di-t-butyl-2-oxyphenyl]methyl}glycinamidato]-dioxo-tungsten(vi) methanol solvateExperimental 3D Coordinates
researchProduct

CCDC 1429012: Experimental Crystal Structure Determination

2016

Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(butyl(4-methylbenzyl)carbamodithioato)-nickel(ii)Experimental 3D Coordinates
researchProduct

CCDC 1901275: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographyCrystal Systemcatena-[tetrakis(mu-nitrato)-hexakis(3-iodopyridine)-bis(nitrato)-tri-copper(ii)]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833428: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal Systemcatena-[(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-europium bromide trifluoromethanesulfonate undecahydrate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1821335: Experimental Crystal Structure Determination

2018

Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F

Space GroupCrystallographyCrystal SystemCrystal Structuredichloro-bis(25-dibromopyridine)-copper(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2109451: Experimental Crystal Structure Determination

2022

Related Article: Balasubramaniam Arul Prakasam, Chandran Udhaya Kumar, Manu Lahtinen, Anssi Peuronen, Mika Sillanp����|2022|Data in Brief|41|107924|doi:10.1016/j.dib.2022.107924

Space GroupCrystallography5-amino-3H-124-dithiazol-3-iminium tetrafluoroborateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 978172: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Samu Forsblom, Manu Lahtinen|2014|Chem.Commun.|50|5469|doi:10.1039/C3CC49663E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersoctakis(mu3-11'1''-((246-Trimethylbenzene-135-triyl)tris(methylene))tris(4-aza-1-azoniabicyclo[2.2.2]octane))-hexakis(acetonitrile)-hexa-copper tetracosakis(hexafluorophosphate) acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 2157986: Experimental Crystal Structure Determination

2023

Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters[N-benzyl-N2N2-bis{[35-di-t-butyl-2-oxyphenyl]methyl}glycinamidato]-dioxo-molybdenum(vi)Experimental 3D Coordinates
researchProduct

CCDC 2001489: Experimental Crystal Structure Determination

2020

Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu-bromo)-(56-dichloropyrazin-2-amine)-copper 56-dichloropyrazin-2-amine)Experimental 3D Coordinates
researchProduct

CCDC 1424394: Experimental Crystal Structure Determination

2016

Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-bis(diphenylphosphorothioyl)methanethiolato)-di-lithiumExperimental 3D Coordinates
researchProduct

CCDC 1833444: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographycatena-((mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-yttrium trinitrate pentahydrate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2157987: Experimental Crystal Structure Determination

2023

Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters[N2N2-bis{[35-di-t-butyl-2-oxyphenyl]methyl}-N-phenylglycinamidato]-dioxo-tungsten(vi) methanol solvateExperimental 3D Coordinates
researchProduct

CCDC 947894: Experimental Crystal Structure Determination

2014

Related Article: Manu Lahtinen, Jyothi Kudva, Poornima Hegde, Krishna Bhat, Erkki Kolehmainen, Nonappa, Venkatesh, Damodara Naral|2014|J.Mol.Struct.|1060|280|doi:10.1016/j.molstruc.2013.12.063

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersN-(4-(Phenylsulfamoyl)phenyl)benzamideExperimental 3D Coordinates
researchProduct

CCDC 1429016: Experimental Crystal Structure Determination

2016

Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027

Space GroupCrystallographyCrystal SystemCrystal Structure((4-bromobenzyl)butylcarbamodithioato)-isothiocyanato-triphenylphosphine-nickel(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2157984: Experimental Crystal Structure Determination

2023

Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters[N2N2-bis{[35-di-t-butyl-2-oxyphenyl]methyl}-N-phenylglycinamidato]-dioxo-molybdenum(vi) methanol solvateExperimental 3D Coordinates
researchProduct

CCDC 1027705: Experimental Crystal Structure Determination

2016

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2016|J.Mol.Struct.|1108|195|doi:10.1016/j.molstruc.2015.11.076

Space GroupCrystallographyCrystal System(benzyl(butyl)carbamodithioato)-chloro-triphenylphosphine-palladium(ii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 913145: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(26-bis((Di-t-butylphosphino)methyl)phenyl)-chloro-palladium(ii) n-pentane solvateExperimental 3D Coordinates
researchProduct

CCDC 1404482: Experimental Crystal Structure Determination

2016

Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552

Space GroupCrystallographyCrystal SystemCrystal Structureiodo-trimethyl-(4-(22':6'2''-terpyridin-4'-yl)benzonitrile)-platinum chloroform solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1863397: Experimental Crystal Structure Determination

2018

Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416

Space GroupCrystallography4-(1235-dithiadiazol-1-ium-4-yl)-1-methylpyridin-1-ium bis(trifluoromethanesulfonate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1821331: Experimental Crystal Structure Determination

2018

Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F

Space GroupCrystallographyCrystal Systemdichloro-bis(2-chloro-5-iodopyridine)-copper(ii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 947465: Experimental Crystal Structure Determination

2013

Related Article: Anssi Peuronen, Esa Lehtimäki, and Manu Lahtinen|2013|Cryst.Growth Des.|13|4615|doi:10.1021/cg401246n

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates11'1''-((246-Trimethylbenzene-135-triyl)tris(methylene))tris-4-aza-1-azoniabicyclo[2.2.2]octane tris(hexafluorophosphate) heptahydrate
researchProduct

CCDC 1833441: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographycatena-((mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-lanthanum trinitrate heptahydrate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1901281: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographyCrystal Systembis(4-bromopyridine)-bis(nitrato)-copper(ii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1023708: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates11'-octane-18-diylbis(4-diiodaniumyl-14-diazoniabicyclo[2.2.2]octane) bis(hexafluorophosphate)
researchProduct

CCDC 1986215: Experimental Crystal Structure Determination

2021

Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531

Space GroupCrystallographyCrystal SystemCrystal Structurebis{22'-[cyclohexa-35-diene-12-diylidenebis(azanylylidene)]bis(46-di-t-butylphenolato)}-nickelCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1821332: Experimental Crystal Structure Determination

2018

Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-chloro)-dichloro-tetrakis(2-bromo-5-fluoropyridine)-di-copper(ii)Experimental 3D Coordinates
researchProduct

CCDC 1557625: Experimental Crystal Structure Determination

2017

Related Article: Jani O. Moilanen, Akseli Mansikkamäki, Manu Lahtinen, Fu-Sheng Guo, Elina Kalenius, Richard A. Layfield, Liviu F. Chibotaru|2017|Dalton Trans.|46|13582|doi:10.1039/C7DT02565C

Space GroupCrystallography25-bis[(trimethylsilyl)oxy]cyclohexa-25-diene-14-dioneCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1023704: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

11'-hexane-16-diylbis(4-diiodaniumyl-14-diazoniabicyclo[2.2.2]octane) bis(hexafluorophosphate)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1901273: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographybis[nitrato]-bis(3-bromopyridine)-copper(ii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1901274: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographyCrystal SystemCrystal Structurebis(2-bromopyridine)-bis(nitrato)-copper(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1901280: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

bis(nitrato)-ethanol-bis(4-iodopyridine)-copper(ii)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1429014: Experimental Crystal Structure Determination

2016

Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027

(butyl(4-methylbenzyl)carbamodithioato)-chloro-triphenylphosphine-nickelSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1901277: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographyCrystal System(acetonitrile)-bis(3-chloropyridine)-bis(nitrato)-copper(ii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1557624: Experimental Crystal Structure Determination

2017

Related Article: Jani O. Moilanen, Akseli Mansikkamäki, Manu Lahtinen, Fu-Sheng Guo, Elina Kalenius, Richard A. Layfield, Liviu F. Chibotaru|2017|Dalton Trans.|46|13582|doi:10.1039/C7DT02565C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(mu-36-dioxocyclohexa-14-diene-14-bis(olato))-tetrachloro-hexakis(tetrahydrofuran)-di-dysprosium(iii)Experimental 3D Coordinates
researchProduct

CCDC 1901270: Experimental Crystal Structure Determination

2019

Related Article: Rakesh Puttreddy, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2019|Cryst.Growth Des.|19|3815|doi:10.1021/acs.cgd.9b00284

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(2-chloropyridine)-bis(nitrato)-copper(ii)Experimental 3D Coordinates
researchProduct

CCDC 913146: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal System(26-bis((Di-t-butylphosphino)methyl)phenyl)-chloro-palladium(ii) 18-di-iodoperfluoro-octaneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1821337: Experimental Crystal Structure Determination

2018

Related Article: Rakesh Puttreddy, Carolina von Essen, Anssi Peuronen, Manu Lahtinen, Kari Rissanen|2018|CrystEngComm|20|1954|doi:10.1039/C8CE00209F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-chloro)-bis(3-fluoropyridine)-copper(ii)]Experimental 3D Coordinates
researchProduct

CCDC 1938196: Experimental Crystal Structure Determination

2019

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

Space GroupCrystallographyoctadecakis(mu-2-phenylethane-1-thiolato)-mercury-tetracosa-goldCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833440: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-((mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-ytterbium bromide trifluoromethanesulfonate pentahydrate)
researchProduct

CCDC 2171082: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters11'-[13-phenylenebis(methylene)]bis(3-iodopyridin-1-ium) bis(trifluoromethanesulfonate)Experimental 3D Coordinates
researchProduct

CCDC 913153: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(26-bis((di-t-butylphosphino)methyl)phenyl)-bromo-palladiumExperimental 3D Coordinates
researchProduct

CCDC 1027703: Experimental Crystal Structure Determination

2016

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2016|J.Mol.Struct.|1108|195|doi:10.1016/j.molstruc.2015.11.076

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(4-(diphenylmethyl)piperazine-1-carbodithioato)-thiocyanato-triphenylphosphine-palladium dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1533111: Experimental Crystal Structure Determination

2017

Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis{4455667788991010111111-heptadecafluoro-N-[4-([1222:2632-terpyridin]-24-yl)phenyl]undecanamide}-nickel(ii) dichloride dimethyl sulfoxide solvate monohydrateExperimental 3D Coordinates
researchProduct

CCDC 913156: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal System(26-bis((Di-t-butylphosphino)methyl)phenyl)-chloro-palladium(ii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1557623: Experimental Crystal Structure Determination

2017

Related Article: Jani O. Moilanen, Akseli Mansikkamäki, Manu Lahtinen, Fu-Sheng Guo, Elina Kalenius, Richard A. Layfield, Liviu F. Chibotaru|2017|Dalton Trans.|46|13582|doi:10.1039/C7DT02565C

Space GroupCrystallographyCrystal SystemCrystal Structure(mu-36-dioxocyclohexa-14-diene-14-bis(olato))-tetrachloro-hexakis(tetrahydrofuran)-di-yttrium(iii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2171085: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[octakis(mu-trifluoromethanesulfonato)-(mu-aqua)-(11'-[14-phenylenebis(methylene)]bis(3-iodopyridin-1-ium))-hexa-silver]Experimental 3D Coordinates
researchProduct

CCDC 1833431: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[(mu-acetato)-(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-neodymium dibromide undecahydrate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2001491: Experimental Crystal Structure Determination

2020

Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045

Space GroupCrystallographycatena-((mu-bromo)-(35-dichloropyrazin-2-amine)-copper)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1938192: Experimental Crystal Structure Determination

2019

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

Space GroupCrystallographyCrystal SystemCrystal Structureoctadecakis(mu-butane-1-thiolato)-tetracosa-gold-platinumCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1863391: Experimental Crystal Structure Determination

2018

Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416

Space GroupCrystallography3-(3H-1235-dithiadiazol-4-yl)pyridine radicalCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 913152: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal System(26-bis((di-t-butylphosphino)methyl)phenyl)-bromo-palladium butyl bromide solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1429015: Experimental Crystal Structure Determination

2016

Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027

Space GroupCrystallographychloro-(4-(diphenylmethyl)piperazine-1-carbodithioato)-triphenylphosphine-nickel acetone solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 927662: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(26-bis((di-t-butylphosphino)methyl)phenyl)-chloro-palladium(ii)Experimental 3D Coordinates
researchProduct

CCDC 2171083: Experimental Crystal Structure Determination

2023

Related Article: J. Mikko Rautiainen, Maryna Green, Minna Mähönen, Jani O. Moilanen, Manu Lahtinen, Arto Valkonen|2023|Cryst.Growth Des.|23|2361|doi:10.1021/acs.cgd.2c01351

Space GroupCrystallography1-ethyl-3-iodopyridin-1-ium trifluoromethanesulfonateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1404483: Experimental Crystal Structure Determination

2016

Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatesiodo-trimethyl-(4-(22':6'2''-terpyridin-4'-yl)benzonitrile)-platinum 12345-pentafluoro-6-iodobenzene
researchProduct

CCDC 913157: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal System(26-bis((Di-t-butylphosphino)methyl)phenyl)-chloro-palladium(ii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833429: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal Systemcatena-[(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-gadolinium dibromide trifluoromethanesulfonate decahydrate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 927660: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal System(26-bis((Di-t-butylphosphino)methyl)phenyl)-chloro-palladium(ii) 18-di-iodoperfluoro-octaneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 927663: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal SystemCrystal Structure(26-bis((di-t-butylphosphino)methyl)phenyl)-bromo-palladium 1122334455667788-hexadecafluoro-18-diiodooctane solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2211277: Experimental Crystal Structure Determination

2023

Related Article: Anssi Peuronen, Anni Taponen, Elina Kalenius, Ari Lehtonen, Manu Lahtinen|2023|Angew.Chem.,Int.Ed.|62|e202215689|doi:10.1002/anie.202215689

Space GroupCrystallographyCrystal Systemtetrakis(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(14-diazabicyclo[2.2.2]octan-1-ium))-hexadecakis(mu-iodo)-dodeca-copper(i) octaiodide bis(acetonitrile-iodo-copper) iodine acetonitrile tetrabromomethane unknown solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825936: Experimental Crystal Structure Determination

2018

Related Article: Ida Mattsson, Manu Lahtinen, Anssi Peuronen, Abhijit Sau, Andreas Gunell, Tiina Saloranta-Simell, Reko Leino|2018|Cryst.Growth Des.|18|3151|doi:10.1021/acs.cgd.8b00263

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersnon-8-ene-123456-hexolExperimental 3D Coordinates
researchProduct

CCDC 2001486: Experimental Crystal Structure Determination

2020

Related Article: Aaron Mailman, Rakesh Puttreddy, Manu Lahtinen, Noora Svahn, Kari Rissanen|2020|Chemistry|2|700|doi:10.3390/chemistry2030045

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-((mu-bromo)-(5-chloropyrazin-2-amine)-copper)Experimental 3D Coordinates
researchProduct

CCDC 927659: Experimental Crystal Structure Determination

2013

Related Article: Magnus T. Johnson,Zoran Dolic,Mario Cetina,Manu Lahtinen,Marten S. G. Ahlquist,Kari Rissanen,Lars Ohrstrom,Ola F. Wendt|2013|Dalton Trans.|42|8484|doi:10.1039/c3dt50190f

Space GroupCrystallographyCrystal System(26-bis((Di-t-butylphosphino)methyl)phenyl)-chloro-palladium(ii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2054862: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis{N-(26-dimethylphenyl)cyano}-bis(iodo)-platinum di-iodineExperimental 3D Coordinates
researchProduct

CCDC 992712: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Samu Forsblom, Manu Lahtinen|2014|Chem.Commun.|50|5469|doi:10.1039/C3CC49663E

Space GroupCrystallographytetrakis(mu~3~-11'1''-((246-trimethylbenzene-135-triyl)tris(methylene))tris(4-aza-1-azoniabicyclo[2.2.2]octane))-dodecakis(acetonitrile)-hexaaqua-hexa-copper dodecakis(trifluoromethanesulfonate) dodecakis(bis(trifluoromethanesulfonyl)imide) acetonitrile solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1987795: Experimental Crystal Structure Determination

2021

Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531

Space GroupCrystallographybis{22'-[cyclohexa-35-diene-12-diylidenebis(azanylylidene)]bis(46-di-t-butylphenolato)}-zirconium(iv) unknown solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2129453: Experimental Crystal Structure Determination

2023

Related Article: Pasi Salonen, Jörg A. Schachner, Anssi Peuronen, Manu Lahtinen, Ferdinand Belaj, Nadia Carmen Mösch-Zanetti, Ari Lehtonen|2023|Mol.Catal.|540|113034|doi:10.1016/j.mcat.2023.113034

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters[N-t-butyl-N2N2-bis{[35-di-t-butyl-2-oxyphenyl]methyl}glycinamidato]-dioxo-molybdenum(vi) methanol solvateExperimental 3D Coordinates
researchProduct

CCDC 1023707: Experimental Crystal Structure Determination

2014

Related Article: Anssi Peuronen, Heikki Rinta, Manu Lahtinen|2015|CrystEngComm|17|1736|doi:10.1039/C4CE01866D

Space GroupCrystallography11'-hexane-16-diylbis(4-aza-1-azoniabicyclo[2.2.2]octane) tetraiodideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1533114: Experimental Crystal Structure Determination

2017

Related Article: Leticia Arnedo-Sánchez, Nonappa, Sandip Bhowmik, Sami Hietala, Rakesh Puttreddy, Manu Lahtinen, Luisa De Cola, Kari Rissanen|2017|Dalton Trans.|46|7309|doi:10.1039/C7DT00983F

Space GroupCrystallography223344556677888-pentadecafluoro-N-[4-([1222:2632-terpyridin]-24-yl)phenyl]octanamide methanol solvate monohydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1404480: Experimental Crystal Structure Determination

2016

Related Article: Biswa Nath Ghosh, Manu Lahtinen, Elina Kalenius, Prasenjit Mal, Kari Rissanen|2016|Cryst.Growth Des.|16|2527|doi:10.1021/acs.cgd.5b01552

Space GroupCrystallographyCrystal SystemCrystal Structure(4'-chloro-22':6'2''-terpyridine)-iodo-trimethyl-platinum bis(12345-pentafluoro-6-iodobenzene)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833430: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-[(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-lanthanum bromide trifluoromethanesulfonate decahydrate]
researchProduct

CCDC 1833438: Experimental Crystal Structure Determination

2019

Related Article: Antti Tiihonen, Manu Lahtinen|2019|CrystEngComm|21|2286|doi:10.1039/C8CE01015C

Space GroupCrystallographyCrystal Systemcatena-((mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(4-carboxylatopyridin-1-ium))-diaqua-terbium dibromide trifluoromethanesulfonate nonahydrate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1554862: Experimental Crystal Structure Determination

2017

Related Article: Lotta Turunen, Anssi Peuronen, Samu Forsblom, Elina Kalenius, Manu Lahtinen and Kari Rissanen|2017|Chem.-Eur.J.|23|11714|doi:10.1002/chem.201702655

Space GroupCrystallographyCrystal Systemtetrakis(mu-11'1''-[(246-trimethylbenzene-135-triyl)tris(methylene)]tris(14-diazabicyclo[2.2.2]octan-1-ium))-hexa-iodonium octadecakis(hexafluorophosphate) acetonitrile solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct