6533b82efe1ef96bd129295b

RESEARCH PRODUCT

Systematic Modulation of the Supramolecular Gelation Properties of Bile Acid Alkyl Amides

Kari RissanenRakesh PuttreddyRiikka KuosmanenElina I. Sievänen

subject

Lithocholic acidSupramolecular chemistry02 engineering and technology010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundAmidebile acid amidesPolymer chemistrysupramolekulaarinen kemiaSide chainMagic angle spinningNMR-spektroskopiata116AlkylX-ray crystallographygeelitchemistry.chemical_classificationintermolecular interactionsOrganic ChemistryDeoxycholic acidsupramolecular gelsCholic acidGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical scienceschemistryamidit0210 nano-technologyröntgenkristallografia

description

The self-assembly properties of nine low-molecular-weight gelators (LMWGs) based on bile acid alkyl amides were studied in detail. Based on the results, the number of hydroxyl groups attached to the steroidal backbone plays a major role in the gelation, although the nature of the aliphatic side chain also modulates the gelation abilities. Of the 50 gel systems studied, 35 are based on lithocholic acid and 15 on cholic acid derivatives. The deoxycholic acid derivatives did not form any gels. The gelation occurred primarily in aromatic solvents and the gels manifested typical fibrous or spherical morphologies. The 13C cross-polarized magic angle spinning (CPMAS) NMR spectra measured on the crystalline materials and the corresponding wet organogels were analogous, suggesting that the chemical environments, that is, the intermolecular interactions found in the two materials were similar. The single-crystal X-ray structures of all nine bile-acid amide derivatives studied revealed very similar molecular conformations in the solid state and gave insights into the possible intermolecular interactions in the gel state. peerReviewed

https://doi.org/10.1002/chem.201803151