0000000000336452

AUTHOR

Andreas Schneider

showing 16 related works from this author

The Presence of Gestational Diabetes is Associated with Increased Detection of Anti-HLA-class II Antibodies in the Maternal Circulation

2006

Problem Gestational diabetes (GD) may be associated with temporarily reduced immune tolerance toward alloantigens for the time of pregnancy. The aim of this study was to assess anti-HLA-class I and -II antibodies as markers for an aberrant immunostimulation in women with GD. Method of study The percentage of anti-HLA-class I and -II antibodies was estimated in women with GD, normal term delivery and fetal distress, which was confirmed by demonstrating low cord blood pH for this patient group. These antibodies may cross the placental barrier and cause interleukin-6 (IL-6) release from fetal monocytes by cross-linking monocytes with antibody-loaded cells. Therefore we estimated the percentage…

medicine.medical_specialtyImmunologyModels BiologicalFetal DistressAntigenIsoantibodiesPregnancyInternal medicinemedicineFetal distressHumansImmunology and AllergyFetusPregnancybusiness.industryHistocompatibility Antigens Class IIObstetrics and GynecologyHydrogen-Ion ConcentrationFetal Bloodmedicine.diseaseGestational diabetesDiabetes GestationalTolerance inductionFetal circulationEndocrinologyReproductive MedicineCord bloodLeukocytes MononuclearFemalebusinessAmerican Journal of Reproductive Immunology
researchProduct

Antagonizing dabigatran by idarucizumab in cases of ischemic stroke or intracranial hemorrhage in Germany - A national case collection.

2017

BackgroundIdarucizumab is a monoclonal antibody fragment with high affinity for dabigatran that reverses its anticoagulant effects within minutes. It may exhibit the potential for patients under dabigatran therapy suffering ischemic stroke to regain eligibility for thrombolysis with rt-PA and may inhibit lesion growth in patients with intracerebral hemorrhage on dabigatran.AimsTo provide insights into the clinical use of idarucizumab in patients under effective dabigatran anticoagulation presenting with signs of ischemic stroke or intracranial hemorrhage.MethodsRetrospective data collected from German neurological/neurosurgical departments administering idarucizumab following product launch…

Malemedicine.medical_specialtymedicine.drug_classmedicine.medical_treatmentMedizin030204 cardiovascular system & hematologyAntibodies Monoclonal HumanizedAntithrombinsDabigatranBrain Ischemia03 medical and health sciences0302 clinical medicineHematomaGermanymedicineHumansThrombolytic TherapyStrokeAgedRetrospective StudiesIntracerebral hemorrhagebusiness.industryAnticoagulantWarfarinIdarucizumabThrombolysismedicine.diseaseSurgeryDabigatranStrokeNeurologyAnesthesiaTissue Plasminogen ActivatorFemalebusinessIntracranial Hemorrhages030217 neurology & neurosurgerymedicine.drugInternational journal of stroke : official journal of the International Stroke Society
researchProduct

Antagonizing dabigatran by idarucizumab in cases of ischemic stroke or intracranial hemorrhage in Germany—Updated series of 120 cases

2020

Background Idarucizumab is a monoclonal antibody fragment with high affinity for dabigatran reversing its anticoagulant effects within minutes. Thereby, patients with acute ischemic stroke who are on dabigatran treatment may become eligible for thrombolysis with recombinant tissue-type plasminogen activator (rt-PA). In patients on dabigatran with intracerebral hemorrhage idarucizumab could prevent lesion growth. Aims To provide insights into the clinical use of idarucizumab in patients under effective dabigatran anticoagulation presenting with signs of acute ischemic stroke or intracranial hemorrhage. Methods Retrospective data collected from German neurological/neurosurgical departments ad…

medicine.medical_specialtymedicine.drug_classmedicine.medical_treatmentMedizinAntibodies Monoclonal HumanizedAntithrombinsBrain IschemiaDabigatranGermanyInternal medicinemedicineHumansThrombolytic Therapyddc:610Ischemic StrokeRetrospective StudiesIntracerebral hemorrhagebusiness.industryAnticoagulantWarfarinIdarucizumabAtrial fibrillationThrombolysisVitamin K antagonistmedicine.diseaseDabigatranStrokeNeurologyCardiologybusinessIntracranial Hemorrhagesmedicine.drugInternational Journal of Stroke
researchProduct

Chiral self-sorting behaviour of [2.2]paracyclophane-based bis(pyridine) ligands

2019

Two constitutionally isomeric chiral bis(pyridine) ligands based on planar chiral 4,15-difunctionalized [2.2]paracyclophanes were synthesized, the respective enantiomers were separated via HPLC on a chiral stationary phase, and their self-assembly behaviour upon coordination to palladium(ii) ions was studied with regard to chiral self-sorting effects. As proven by NMR spectroscopy, mass spectrometry, CD spectroscopy, UV-Vis spectroscopy and X-ray crystallography both ligands form the expected dinuclear complexes upon coordination to cis-protected di- or tetravalent palladium(ii) ions, respectively, however, with distinct differences concerning their chiral self-sorting ability. peerReviewed

Circular dichroismPalladium compoundsmassaspektrometriaPyridinechemistry.chemical_element010402 general chemistryMass spectrometryLigands01 natural sciencesIonchemistry.chemical_compoundPyridineNMR-spektroskopiaSpectroscopyta116Nuclear magnetic resonance spectroscopyUltraviolet visible spectroscopyMass spectrometry010405 organic chemistryligandsCircular dichroism spectroscopyNuclear magnetic resonance spectroscopyX ray crystallographyliganditkidetiede0104 chemical sciencesorganic chemistryCrystallographychemistrySynthesis (chemical)orgaaninen kemiaEnantiomerPalladiumOrganic Chemistry Frontiers
researchProduct

Influencing the Self‐Sorting Behavior of [2.2]Paracyclophane‐Based Ligands by Introducing Isostructural Binding Motifs

2020

Abstract Two isostructural ligands with either nitrile (Lnit) or isonitrile (Liso) moieties directly connected to a [2.2]paracyclophane backbone with pseudo‐meta substitution pattern have been synthesized. The ligand itself (Lnit) or its precursors (Liso) were resolved by HPLC on a chiral stationary phase and the absolute configuration of the isolated enantiomers was assigned by XRD analysis and/or by comparison of quantum‐chemical simulated and experimental electronic circular dichroism (ECD) spectra. Surprisingly, the resulting metallosupramolecular aggregates formed in solution upon coordination of [(dppp)Pd(OTf)2] differ in their composition: whereas Lnit forms dinuclear complexes, Liso…

Circular dichroismNitrileSupramolecular chemistry010402 general chemistry01 natural sciencesCatalysisself-sortingsupramolecular chemistrychemistry.chemical_compoundIsostructuralFull Paper010405 organic chemistryLigandOrganic ChemistryAbsolute configurationGeneral ChemistryNuclear magnetic resonance spectroscopyself-assemblyFull Papers0104 chemical sciencesCrystallographychemistrynitrile ligandsEnantiomerSupramolecular Chemistry | Hot Paperisonitrile ligandsChemistry (Weinheim an Der Bergstrasse, Germany)
researchProduct

Subcomponent self‐assembly of a cyclic tetranuclear Fe(II) helicate in a highly diastereoselective self‐sorting manner

2019

Abstract An enantiomerically pure diamine based on the 4,15‐difunctionalized [2.2]paracyclophane scaffold and 2‐formylpyridine self‐assemble into an optically pure cyclic metallosupramolecular Fe4L6 helicate upon mixing with iron(II) ions in a diastereoselective subcomponent self‐assembly process. The cyclic assembly results from steric strain that prevents the formation of a smaller linear dinuclear triple‐stranded helicate, and hence, leads to the larger strain‐free assembly that fulfils the maximum occupancy rule. Interestingly, use of the racemic diamine also leads to a racemic mixture of the homochiral cyclic helicates as the major product in a highly diastereoselective narcissistic ch…

Circular dichroismSupramolecular chemistry010402 general chemistrychiral self-sorting01 natural sciencesCatalysisSupramolecular ChemistryStereocenterchemistry.chemical_compoundDiaminesupramolekulaarinen kemiacyclic helicates010405 organic chemistryCommunicationOrganic Chemistrymetallo-supramolecular chemistryDiastereomersubcomponent self-assemblyGeneral Chemistryself-assemblyparacyclophanesCommunications3. Good health0104 chemical sciencesCrystallographySelf sortingchemistryRacemic mixtureSelf-assembly[2.2]paracyclophane
researchProduct

Influencing the self‐sorting behavior of [2.2]paracyclophane based ligands by introducing isostructural binding motifs

2020

Two isostructural ligands with either nitrile ( L nit ) or isonitrile ( L iso ) moieties directly connected to a [2.2]paracyclophane backbone with pseudo‐meta substitution pattern have been synthesized. The ligand itself ( L nit ) or its precursors ( L iso ) were resolved via HPLC on a chiral stationary phase and the absolute configuration of the isolated enantiomers was assigned by XRD analysis and/or by comparison of quantum‐chemical simulated and experimental ECD‐spectra. Surprisingly, the resulting metallosupramolecular aggregates formed in solution upon coordination of [(dppp)Pd(OTf) 2 ] differ in their composition: whereas L nit forms dinuclear complexes L iso exclusively forms trinuc…

supramolekulaarinen kemianitrile ligandsself-assemblyliganditsupramolecular chemistryisonitrile ligandsself-sorting
researchProduct

CCDC 1919439: Experimental Crystal Structure Determination

2019

Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(SP)-44'-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diyl]dianiline methanol solvateExperimental 3D Coordinates
researchProduct

CCDC 1824417: Experimental Crystal Structure Determination

2020

Related Article: Lucia Volbach, Niklas Struch, Fabian Bohle, Filip Topić, Gregor Schnakenburg, Andreas Schneider, Kari Rissanen, Stefan Grimme, Arne Lützen|2020|Chem.-Eur.J.|26|3335|doi:10.1002/chem.201905070

catena-[(mu-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diyl]bis(isocyano))-((propane-13-diyl)bis(diphenylphosphane))-palladium bis(trifluoromethanesulfonate) acetonitrile solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1824416: Experimental Crystal Structure Determination

2020

Related Article: Lucia Volbach, Niklas Struch, Fabian Bohle, Filip Topić, Gregor Schnakenburg, Andreas Schneider, Kari Rissanen, Stefan Grimme, Arne Lützen|2020|Chem.-Eur.J.|26|3335|doi:10.1002/chem.201905070

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[[(propane-13-diyl)bis(diphenylphosphine)]-[mu-tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-dicarbonitrile]-palladium bis(trifluoromethanesulfonate)]Experimental 3D Coordinates
researchProduct

CCDC 1955599: Experimental Crystal Structure Determination

2020

Related Article: Lucia Volbach, Niklas Struch, Fabian Bohle, Filip Topić, Gregor Schnakenburg, Andreas Schneider, Kari Rissanen, Stefan Grimme, Arne Lützen|2020|Chem.-Eur.J.|26|3335|doi:10.1002/chem.201905070

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-dicarbonitrileExperimental 3D Coordinates
researchProduct

CCDC 1919442: Experimental Crystal Structure Determination

2019

Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164

(rac)-hexakis(mu-NN'-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diylbis(41-phenylene)]bis[1-(pyridin-2-yl)methanimine])-tetra-iron(ii) octakis(trifluoromethanesulfonate) unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1919441: Experimental Crystal Structure Determination

2019

Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164

Space GroupCrystallographyΛΛΛ)-hexakis(mu-(SP)-NN'-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diylbis(41-phenylene)]bis[1-(pyridin-2-yl)methanimine])-tetra-iron(ii) octakis(trifluoromethanesulfonate) acetonitrile unknown solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1919440: Experimental Crystal Structure Determination

2019

Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164

ΔΔΔ)-hexakis(mu-(RP)-NN'-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diylbis(41-phenylene)]bis[1-(pyridin-2-yl)methanimine])-tetra-iron(ii) octakis(trifluoromethanesulfonate) acetonitrile unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1955601: Experimental Crystal Structure Determination

2020

Related Article: Lucia Volbach, Niklas Struch, Fabian Bohle, Filip Topić, Gregor Schnakenburg, Andreas Schneider, Kari Rissanen, Stefan Grimme, Arne Lützen|2020|Chem.-Eur.J.|26|3335|doi:10.1002/chem.201905070

catena-[[(propane-13-diyl)bis(diphenylphosphine)]-[mu-tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-dicarbonitrile]-palladiumbis( trifluoromethanesulfonate) dichloromethane solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1955600: Experimental Crystal Structure Determination

2020

Related Article: Lucia Volbach, Niklas Struch, Fabian Bohle, Filip Topić, Gregor Schnakenburg, Andreas Schneider, Kari Rissanen, Stefan Grimme, Arne Lützen|2020|Chem.-Eur.J.|26|3335|doi:10.1002/chem.201905070

Space GroupCrystallography[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diyl]bis(isocyanide)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct