6533b856fe1ef96bd12b31a6
RESEARCH PRODUCT
Influencing the Self‐Sorting Behavior of [2.2]Paracyclophane‐Based Ligands by Introducing Isostructural Binding Motifs
Kari RissanenAndreas SchneiderArne LützenStefan GrimmeLucia VolbachGregor SchnakenburgFilip TopićFilip TopićNiklas StruchFabian Bohlesubject
Circular dichroismNitrileSupramolecular chemistry010402 general chemistry01 natural sciencesCatalysisself-sortingsupramolecular chemistrychemistry.chemical_compoundIsostructuralFull Paper010405 organic chemistryLigandOrganic ChemistryAbsolute configurationGeneral ChemistryNuclear magnetic resonance spectroscopyself-assemblyFull Papers0104 chemical sciencesCrystallographychemistrynitrile ligandsEnantiomerSupramolecular Chemistry | Hot Paperisonitrile ligandsdescription
Abstract Two isostructural ligands with either nitrile (Lnit) or isonitrile (Liso) moieties directly connected to a [2.2]paracyclophane backbone with pseudo‐meta substitution pattern have been synthesized. The ligand itself (Lnit) or its precursors (Liso) were resolved by HPLC on a chiral stationary phase and the absolute configuration of the isolated enantiomers was assigned by XRD analysis and/or by comparison of quantum‐chemical simulated and experimental electronic circular dichroism (ECD) spectra. Surprisingly, the resulting metallosupramolecular aggregates formed in solution upon coordination of [(dppp)Pd(OTf)2] differ in their composition: whereas Lnit forms dinuclear complexes, Liso exclusively forms trinuclear ones. Furthermore, they also differ in their chiral self‐sorting behavior as (rac)‐Liso undergoes exclusive social self‐sorting leading to a heterochiral assembly, whereas (rac)‐Liso shows a twofold preference for the formation of homochiral complexes in a narcissistic self‐sorting manner as proven by ESI mass spectrometry and NMR spectroscopy. Interestingly, upon crystallization, these discrete aggregates undergo structural transformation to coordination polymers, as evidenced by single‐crystal X‐ray diffraction.
year | journal | country | edition | language |
---|---|---|---|---|
2020-03-12 | Chemistry (Weinheim an Der Bergstrasse, Germany) |