0000000001303937

AUTHOR

Sabrina Antonello

Au25(SEt)18 a nearly naked thiolate-protected Au25 cluster Struct. analysis by single crystal X-ray crystallograp. and electron nuclear double res

X-ray crystallography has been fundamental in discovering fine structural features of ultrasmall gold clusters capped by thiolated ligands. For still unknown structures, however, new tools capable of providing relevant structural information are sought. We prepared a 25-gold atom nanocluster protected by the smallest ligand ever used, ethanethiol. This cluster displays the electrochemistry, mass spectrometry, and UV-vis absorption spectroscopy features of similar Au25 clusters protected by 18 thiolated ligands. The anionic and the neutral form of Au25(SEt)18 were fully characterized by (1)H and (13)C NMR spectroscopy, which confirmed the monolayer's properties and the paramagnetism of neutr…

research product

Electrocrystallization of Monolayer-Protected Gold Clusters : Opening the Door to Quality, Quantity, and New Structures

Thiolate-protected metal clusters are materials of ever-growing importance in fundamental and applied research. Knowledge of their single-crystal X-ray structures has been instrumental to enable advanced molecular understanding of their intriguing properties. So far, however, a general, reliable, chemically clean approach to prepare single crystals suitable for accurate crystallographic analysis was missing. Here we show that single crystals of thiolate-protected clusters can be grown in large quantity and very high quality by electrocrystallization. This method relies on the fact that charged clusters display a higher solubility in polar solvents than their neutral counterparts. Nucleation…

research product

A magnetic look into the protecting layer of Au25 clusters

The field of molecular metal clusters protected by organothiolates is experiencing a very rapid growth. So far, however, a clear understanding of the fine interactions between the cluster core and the capping monolayer has remained elusive, despite the importance of the latter in interfacing the former to the surrounding medium. Here, we describe a very sensitive methodology that enables comprehensive assessment of these interactions. Pulse electron nuclear double resonance (ENDOR) was employed to study the interaction of the unpaired electron with the protons of the alkanethiolate ligands in four structurally related paramagnetic Au25(SR)0 18 clusters (R ¼ ethyl, propyl, butyl, 2-methylpro…

research product

Gold Nanowired: A Linear (Au25)n Polymer from Au25 Molecular Clusters

Au25(SR)18 has provided fundamental insights into the properties of clusters protected by monolayers of thiolated ligands (SR). Because of its ultrasmall core, 1 nm, Au25(SR)18 displays molecular behavior. We prepared a Au25 cluster capped by n-butanethiolates (SBu), obtained its structure by single-crystal X-ray crystallography, and studied its properties both experimentally and theoretically. Whereas in solution Au25(SBu)18(0) is a paramagnetic molecule, in the crystal it becomes a linear polymer of Au25 clusters connected via single Au-Au bonds and stabilized by proper orientation of clusters and interdigitation of ligands. At low temperature, [Au25(SBu)18(0)]n has a nonmagnetic ground s…

research product

Metal Doping of Au25(SR)18- Clusters : Insights and Hindsights

The structure, properties, and applications of atomically precise gold nanoclusters are the object of active research worldwide. Over the last few years, research has been also focusing on selective doping of metal nanoclusters through introduction of foreign-metal atoms. Doping has been studied for several clusters, especially the atomically precise Au25(SR)18. Doping has been carried out with noble metals, such as platinum, and less noble metals, such as cadmium and mercury, also because of the ease by which monodoping can be achieved with these metals. Previous studies, which relied extensively on the use of mass spectrometry and single crystal X-ray crystallography, led to assign the sp…

research product

CCDC 1938197: Experimental Crystal Structure Determination

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

research product

CCDC 1938194: Experimental Crystal Structure Determination

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

research product

CCDC 984217: Experimental Crystal Structure Determination

Related Article: Tiziano Dainese, Sabrina Antonello, José A. Gascón, Fangfang Pan, Neranjan V. Perera, Marco Ruzzi, Alfonso Venzo, Alfonso Zoleo, Kari Rissanen, and Flavio Maran|2014|ACS Nano|8|3904|doi:10.1021/nn500805n

research product

CCDC 1938193: Experimental Crystal Structure Determination

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

research product

CCDC 1938198: Experimental Crystal Structure Determination

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

research product

CCDC 1519225: Experimental Crystal Structure Determination

Related Article: Sabrina Antonello, Tiziano Dainese, Fangfang Pan, Kari Rissanen, Flavio Maran|2017|J.Am.Chem.Soc.|139|4168|doi:10.1021/jacs.7b00568

research product

CCDC 998586: Experimental Crystal Structure Determination

Related Article: Marco De Nardi, Sabrina Antonello, De-en Jiang, Fangfang Pan, Kari Rissanen, Marco Ruzzi, Alfonso Venzo, Alfonso Zoleo, Flavio Maran|2014|ACS Nano|8|8505|doi:10.1021/nn5031143

research product

CCDC 1453036: Experimental Crystal Structure Determination

Related Article: Mikhail Agrachev, Sabrina Antonello, Tiziano Dainese, José A. Gascón, Fangfang Pan, Kari Rissanen, Marco Ruzzi, Alfonso Venzo, Alfonso Zoleo, Flavio Maran|2016|Chemical Science|7|6910|doi:10.1039/C6SC03691K

research product

CCDC 1519226: Experimental Crystal Structure Determination

Related Article: Sabrina Antonello, Tiziano Dainese, Fangfang Pan, Kari Rissanen, Flavio Maran|2017|J.Am.Chem.Soc.|139|4168|doi:10.1021/jacs.7b00568

research product

CCDC 1938195: Experimental Crystal Structure Determination

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

research product

CCDC 1427512: Experimental Crystal Structure Determination

Related Article: Tiziano Dainese, Sabrina Antonello, José A. Gascón, Fangfang Pan, Neranjan V. Perera, Marco Ruzzi, Alfonso Venzo, Alfonso Zoleo, Kari Rissanen, and Flavio Maran|2014|ACS Nano|8|3904|doi:10.1021/nn500805n

research product

CCDC 1938196: Experimental Crystal Structure Determination

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

research product

CCDC 1938192: Experimental Crystal Structure Determination

Related Article: Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran|2019|J.Am.Chem.Soc.|141|16033|doi:10.1021/jacs.9b08228

research product