0000000001304365

AUTHOR

Sven Stöttinger

Dibenzo[hi,st]ovalene as Highly Luminescent Nanographene: Efficient Synthesis via Photochemical Cyclodehydroiodination, Optoelectronic Properties, and Single-Molecule Spectroscopy

Dibenzo[hi,st]ovalene (DBOV), as a new nanographene, has demonstrated promising optical properties, such as red emission with a high fluorescence quantum yield of 79% and stimulated emission, as well as high thermal stability and photostability, which indicated its promise as a light-emitting and optical gain material. However, the previous synthetic routes required at least 12 steps. This obstructed access to different derivatives, e.g., to obtain crystals suitable for X-ray diffraction analysis and to tune the optoelectronic properties. Here, we report an efficient synthetic pathway to DBOV based on a sequential iodination-benzannulation of bi(naphthylphenyl)diyne, followed by photochemic…

research product

Single Semiconductor Nanocrystals under Compressive Stress: Reversible Tuning of the Emission Energy

The photoluminescence of individual CdSe/CdS/ZnS core/shell nanocrystals has been investigated under external forces. After mutual alignment of a correlative atomic force and confocal microscope, individual particles were colocalized and exposed to a series of force cycles by using the tip of the AFM cantilever as a nanoscale piston. Thus, force-dependent changes of photophysical properties could be tracked on a single particle level. Remarkably, individual nanocrystals either shifted to higher or to lower emission energies with no indications of multiple emission lines under applied force. The direction and magnitude of these reversible spectral shifts depend on the orientation of nanocrys…

research product

Assembly and Separation of Semiconductor Quantum Dot Dimers and Trimers

Repeated precipitation of colloidal semiconductor quantum dots (QD) from a good solvent by adding a poor solvent leads to an increasing number of QD oligomers after redispersion in the good solvent. By using density gradient ultracentrifugation we have been able to separate QD monomer, dimer, and trimer fractions from higher oligomers in such solutions. In the corresponding fractions QD dimers and trimers have been enriched up to 90% and 64%, respectively. Besides directly coupled oligomers, QD dimers and trimers were also assembled by linkage with a rigid terrylene diimide dye (TDI) and separated again by ultracentrifugation. High-resolution transmission electron micrographs show that the …

research product

Correlative atomic force and confocal fluorescence microscopy: single molecule imaging and force induced spectral shifts (Conference Presentation)

A grand challenge in nanoscience is to correlate structure or morphology of individual nano-sized objects with their photo-physical properties. An early example have been measurements of the emission spectra and polarization of single semiconductor quantum dots as well as their crystallographic structure by a combination of confocal fluorescence microscopy and transmission electron microscopy.[1] Recently, the simultaneous use of confocal fluorescence and atomic force microscopy (AFM) has allowed for correlating the morphology/conformation of individual nanoparticle oligomers or molecules with their photo-physics.[2, 3] In particular, we have employed the tip of an AFM cantilever to apply c…

research product

Impact of local compressive stress on the optical transitions of single organic dye molecules

The ability to mechanically control the optical properties of individual molecules is a grand challenge in nanoscience and could enable the manipulation of chemical reactivity at the single-molecule level. In the past, light has been used to alter the emission wavelength of individual molecules or modulate the energy transfer quantum yield between them. Furthermore, tensile stress has been applied to study the force dependence of protein folding/unfolding and of the chemistry and photochemistry of single molecules, although in these mechanical experiments the strength of the weakest bond limits the amount of applicable force. Here, we show that compressive stress modifies the photophysical …

research product

CCDC 1852851: Experimental Crystal Structure Determination

Related Article: Qiang Chen, Stefan Thoms, Sven Stöttinger, Dieter Schollmeyer, Klaus Müllen, Akimitsu Narita, Thomas Basché|2019|J.Am.Chem.Soc.|141|16439|doi:10.1021/jacs.9b08320

research product

CCDC 1852850: Experimental Crystal Structure Determination

Related Article: Qiang Chen, Stefan Thoms, Sven Stöttinger, Dieter Schollmeyer, Klaus Müllen, Akimitsu Narita, Thomas Basché|2019|J.Am.Chem.Soc.|141|16439|doi:10.1021/jacs.9b08320

research product