0000000001305028
AUTHOR
Guillaume De Robillard
ChemInform Abstract: Electrosynthesis of Imidazolium Carboxylates.
For the first time the synthesis of imidazolium carboxylates is efficiently achieved by electrochemical reduction of imidazolium salts under very mild conditions.
Electrosynthesis of imidazolium carboxylates.
Synthesis of imidazolium carboxylate compounds was efficiently achieved by electrochemical reduction of imidazolium precursors under very mild conditions.
Identification of Three-Way DNA Junction Ligands through Screening of Chemical Libraries and Validation by Complementary in Vitro Assays
International audience; The human genome is replete with repetitive DNA sequences that can fold into thermodynamically stable secondary structures such as hairpins and quadruplexes. Cellular enzymes exist to cope with these structures whose stable accumulation would result in DNA damage through interference with DNA transactions such as transcription and replication. Therefore, the chemical stabilization of secondary DNA structures offers an attractive way to foster DNA transaction-associated damages to trigger cell death in proliferating cancer cells. While much emphasis has been recently given to DNA quadruplexes, we focused here on three-way DNA junctions (TWJ) and report on a strategy t…
An electrochemical process to prepare and recycle biobased ionic liquids
This manuscript describes the first electrosynthesis of biobased ionic liquids from L-valine, oxalic acid and glyoxal, which is energy-efficient, does not emit toxic waste and avoids the formation of inorganic waste. These ionic liquids were then used in the development of our electro-recycling process. While their recycling yields are still moderated due to recombination and disproportionation reactions, this unprecedented recycling technology is very promising in terms of environmental and economic gains. Indeed, it has a high energy efficiency, requires low cost equipment, allows a strong decrease of the price of such ionic solvents, limits the use of non-renewable resources and solves t…
ChemInform Abstract: Imidazolium and Potassium Hydrogen Carbonate Salts as Ecofriendly Organocatalysts for Oxazolidinone Synthesis.
Although oxazolidinones are valuable intermediate compounds for industrial applications, no synthetic method is suitable for their production on a large scale owing to the use of reagents/catalysts that are hazardous or toxic to human health or ecotoxic for the environment. In this manuscript, we describe new and efficient catalysts, that is, the nontoxic hydrogen carbonate anion in combination with a potassium or diisobutylimidazolium ([iBu(2)IM]) countercation, for the conversion of -amino alcohols into cyclic oxazolidinones in high yields of 69 to 90%. Depending on the catalytic conditions, both catalysts could be easily recovered from the crude reaction products and reused several times…
Imidazolium and Potassium Hydrogen Carbonate Salts as Ecofriendly Organocatalysts for Oxazolidinone Synthesis
International audience; Although oxazolidinones are valuable intermediate compounds for industrial applications, no synthetic method is suitable for their production on a large scale owing to the use of reagents/catalysts that are hazardous or toxic to human health or ecotoxic for the environment. In this manuscript, we describe new and efficient catalysts, that is, the nontoxic hydrogen carbonate anion in combination with a potassium or diisobutylimidazolium ([iBu(2)IM]) countercation, for the conversion of -amino alcohols into cyclic oxazolidinones in high yields of 69 to 90%. Depending on the catalytic conditions, both catalysts could be easily recovered from the crude reaction products …
CCDC 939068: Experimental Crystal Structure Determination
Related Article: Guillaume de Robillard, Charles H. Devillers, Doris Kunz, Hélène Cattey, Eric Digard, and Jacques Andrieu|2013|Org.Lett.|15|4410|doi:10.1021/ol401949f
CCDC 939067: Experimental Crystal Structure Determination
Related Article: Guillaume de Robillard, Charles H. Devillers, Doris Kunz, Hélène Cattey, Eric Digard, and Jacques Andrieu|2013|Org.Lett.|15|4410|doi:10.1021/ol401949f