0000000001305457
AUTHOR
Dalial Freitak
Lepidopteran species have a variety of defence strategies against bacterial infections
The insect immune system has versatile ways of coping with microbial insults. Currently, innate immune priming has been described in several invertebrates, and the first insights into its mechanistic basis have been described. Here we studied infections with two different strains of Serratia marcescens bacteria in two different Lepidopteran hosts. The results reveal fundamental differences between the two hosts, a well-known model organism Galleria mellonella and a non-model species Arctia plantaginis. They differ in their strategies for resisting oral infections; priming their defences against a recurring sepsis; and upregulating immunity related genes as a response to the specific pathoge…
Starvation resistance and tissue-specific gene expression of stress-related genes in a naturally inbred ant population
Starvation is one of the most common and severe stressors in nature. Not only does it lead to death if not alleviated, it also forces the starved individual to allocate resources only to the most essential processes. This creates energetic trade-offs which can lead to many secondary challenges for the individual. These energetic trade-offs could be exacerbated in inbred individuals, which have been suggested to have a less efficient metabolism. Here, we studied the effect of inbreeding on starvation resistance in a natural population of Formica exsecta ants, with a focus on survival and tissue-specific expression of stress, metabolism and immunity-related genes. Starvation led to large tis…
Long-Term Prophylactic Antibiotic Treatment: Effects on Survival, Immunocompetence and Reproduction Success of Parasemia plantaginis (Lepidoptera: Erebidae)
Hundreds of insect species are nowadays reared under laboratory conditions. Rearing of insects always implicates the risk of diseases, among which microbial infections are the most frequent and difficult problems. Although there are effective prophylactic treatments, the side effects of applied antibiotics are not well understood. We examined the effect of prophylactic antibiotic treatment on the overwintering success of wood tiger moth (Parasemia plantaginis) larvae, and the postdiapause effect on their life-history traits. Four weeks before hibernation larvae were treated with a widely used antibiotic (fumagillin). We monitored moths' survival and life-history traits during the following …
Ants medicate to fight disease
Parasites are ubiquitous, and the ability to defend against these is of paramount importance. One way to fight diseases is self-medication, which occurs when an organism consumes biologically active compounds to clear, inhibit, or alleviate disease symptoms. Here, we show for the first time that ants selectively consume harmful substances (reactive oxygen species, ROS) upon exposure to a fungal pathogen, yet avoid these in the absence of infection. This increased intake of ROS, while harmful to healthy ants, leads to higher survival of exposed ants. The fact that ingestion of this substance carries a fitness cost in the absence of pathogens rules out compensatory diet choice as the mechanis…
Ecological conditions alter cooperative behaviour and its costs in a chemically defended sawfly
The evolution of cooperation and social behaviour is often studied in isolation from the ecology of organisms. Yet, the selective environment under which individuals evolve is much more complex in nature, consisting of ecological and abiotic interactions in addition to social ones. Here, we measured the life-history costs of cooperative chemical defence in a gregarious social herbivore, Diprion pini pine sawfly larvae, and how these costs vary under different ecological conditions. We ran a rearing experiment where we manipulated diet (resin content) and attack intensity by repeatedly harassing larvae to produce a chemical defence. We show that forcing individuals to allocate more to coope…
Survival and gene expression under different temperature and humidity regimes in ants
Short term variation in environmental conditions requires individuals to adapt via changes in behavior and/or physiology. In particular variation in temperature and humidity are common, and the physiological adaptation to changes in temperature and humidity often involves alterations in gene expression, in particular that of heat-shock proteins. However, not only traits involved in the resistance to environmental stresses, but also other traits, such as immune defenses, may be influenced indirectly by changes in temperature and humidity. Here we investigated the response of the ant F. exsecta to two temperature regimes (20 degrees C & 25 degrees C), and two humidity regimes (50% & 75%), for…
Formation of melanin-based wing patterns is influenced by condition and immune challenge in Pieris brassicae
According to life-history theory, trade-offs emerge because organisms possess a limited amount of resources that they have to allocate between different bodily functions. Here, we tested whether there is a trade-off between melanin-based immune response and dark melanized wing patterning in the large white butterfly, Pieris brassicae L. (Lepidoptera: Pieridae), by activating the immune system of pupae and measuring the wing pigmentation of freshly emerged adults. In contrast to expectations, we did not find any negative associations between immune challenge and wing patterning. Furthermore, implanted and punctured male pupae tended to have larger and darker forewing tips as adults compared …
Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria
Recent studies of honeybees and bumblebees have examined combinatory effects of different stressors, as insect pollinators are naturally exposed to multiple stressors. At the same time the potential influences of simultaneously occurring agricultural agents on insect pollinator health remain largely unknown. Due to different farming methods, and the drift of applied agents and manure, pollinators are most probably exposed to insecticides but also bacteria from organic fertilizers at the same time. We orally exposed honeybee workers to sub-lethal doses of the insecticide thiacloprid and two strains of the bacterium Enterococcus faecalis, which can occur in manure from farming animals. Our re…
Insect immunity: oral exposure to a bacterial pathogen elicits free radical response and protects from a recurring infection
Background: Previous exposure to a pathogen can help organisms cope with recurring infection. This is widely recognised in vertebrates, but increasing occasions are also being reported in invertebrates where this phenomenon is referred to as immune priming. However, the mechanisms that allow acquired pathogen resistance in insects remain largely unknown. Results: We studied the priming of bacterial resi stance in the larvae of the tiger moth, Parasemia plantaginis using two gram-negative bacteria, a pathogenic Serratia marcescens and a non-pathogenic control, Escherichia coli. Asublethaloraldoseof S. marcescens provided the larvae with effective protection against an otherwise lethal septic…
Electronic Supplementary Material from Ecological conditions alter cooperative behaviour and its costs in a chemically defended sawfly.
The evolution of cooperation and social behaviour is often studied in isolation from the ecology of organisms. Yet, the selective environment under which individuals evolve is much more complex in nature, consisting of ecological and abiotic interactions in addition to social ones. Here, we measured the life-history costs of cooperative chemical defence in a gregarious social herbivore, Diprion pini pine sawfly larvae, and how these costs vary under different ecological conditions. We ran a rearing experiment where we manipulated diet (resin content) and attack intensity by repeatedly harassing larvae to produce a chemical defence. We show that forcing individuals to allocate more to cooper…
Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin.
Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae – the gram-positive bacterium causing American foulbrood disease – and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin bi…
Inbreeding-related trade-offs in stress resistance in the ant Formica exsecta
Inbred individuals and populations are predicted to suffer from inbreeding depression, especially in times of stress. Under natural conditions, organisms are exposed to more than one stressor at any one time, highlighting the importance of stress resistance traits. We studied how inbreeding- and immunity-related traits are correlated under different dietary conditions in the ant Formica exsecta . Its natural diet varies in the amount and nature of plant secondary compounds and the level of free radicals, all of which require detoxification to maintain organismal homeostasis. We found that inbreeding decreased general antibacterial activity under dietary stress, suggesting inbreeding-relate…
Data from: Ants medicate to fight disease
Parasites are ubiquitous, and the ability to defend against these is of paramount importance. One way to fight diseases is self-medication, which occurs when an organism consumes biologically active compounds to clear, inhibit or alleviate disease symptoms. Here, we show for the first time that ants selectively consume harmful substances (Reactive Oxygen Species, ROS) upon exposure to a fungal pathogen, yet avoid these in the absence of infection. This increased intake of ROS, while harmful to healthy ants, leads to higher survival of exposed ants. The fact that ingestion of this substance carries a fitness cost in the absence of pathogens rules out compensatory diet choice as the mechanism…
Data from: Ecological conditions alter cooperative behaviour and its costs in a chemically defended sawfly
The evolution of cooperation and social behaviour is often studied in isolation from the ecology of organisms. Yet, the selective environment under which individuals evolve is much more complex in nature, consisting of ecological and abiotic interactions in addition to social ones. Here we measured the life-history costs of cooperative chemical defence in a gregarious social herbivore, Diprion pini pine sawfly larvae, and how these costs vary under different ecological conditions. We ran a rearing experiment where we manipulated diet (resin content) and attack intensity by repeatedly harassing larvae to produce a chemical defence. We show that forcing individuals to allocate more to coopera…
Data from: Inbreeding-related trade-offs in stress-resistance in the ant Formica exsecta
Inbred individuals and populations are predicted to suffer from inbreeding depression, especially in times of stress. Under natural conditions, organisms are exposed to more than one stressor at any one time, highlighting the importance of stress resistance traits. We studied how inbreeding- and immunity-related traits are correlated under different dietary conditions in the ant Formica exsecta. Its natural diet varies in the amount and nature of plant secondary compounds and the level of free radicals, all of which require detoxification to maintain organismal homeostasis. We found that inbreeding decreased general antibacterial activity under dietary stress, suggesting inbreeding-related …