0000000001305581
AUTHOR
Jonathan R. Nitschke
Helicate Extension as a Route to Molecular Wires
We describe the preparation of a helicate containing four closely spaced, linearly arrayed copper(I) ions. This product may be prepared either directly by mixing copper(I) with a set of precursor amine and aldehyde subcomponents, or indirectly through the dimerization of a dicopper(I) helicate upon addition of 1,2-phenylenediamine. A notable feature of this helicate is that its length is not limited by the lengths of its precursor subcomponents: each of the two ligands wrapped around the four copper(I) centers contains one diamine, two dialdehyde, and two monoamine residues. This work thus paves the way for the preparation of longer oligo- and polymeric structures. DFT calculations and elec…
Frontispiece: An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior
An Unlockable-Relockable Iron Cage by Subcomponent Self-Assembly
Ein achtkerniger metallosupramolekularer Würfel mit Spin-Crossover-Eigenschaften
Generation of [2×2] Grid Metallosupramolecular Architectures from Preformed Ditopic Bis(acylhydrazone) Ligands and through Component Self‐Assembly
Ditopic bis(acylhydrazone) ligands, derived from the reactions of carbohydrazides with 2-phenylpyrimidine-4,6-dicarbaldehyde and designed for grid formation with octahedrally coordinating transition-metal ions, exhibit a varied coordination chemistry depending upon the degree of their deprotonation. The neutral acylhydrazones are relatively poor ligands and are seemingly involved in multiple, labile complexation equilibria varying with the solvent and the particular metal salt in solution; nevertheless, grid complexes of different forms can be isolated in the solid state. Although only limited study has been made of the singly deprotonated ligands, grid species appear to be much more readil…
Inside Cover: A Self-Assembled M8L6 Cubic Cage that Selectively Encapsulates Large Aromatic Guests (Angew. Chem. Int. Ed. 15/2011)
White Phosphorus Is Air-Stable Within a Self-Assembled Tetrahedral Capsule
Molecular Fire Quencher Cage-shaped molecular assemblies can regulate the reactivity of smaller molecules trapped within them. Mal et al. (p. 1697 ) extend this approach to enable the protection of elemental white phosphorus (P 4 ), a substance that rapidly ignites on contact with oxygen. The tetrahedral cages self-assemble in aqueous solution through coordination of six ligands to four iron ions, and efficiently capture phosphorus from a suspension. The water-soluble host-guest constructs were stable in air for at least 4 months, but released intact P 4 rapidly on displacement by added benzene.
Cover Picture: An Unlockable-Relockable Iron Cage by Subcomponent Self-Assembly (Angew. Chem. Int. Ed. 43/2008)
Size‐Selective Encapsulation of Hydrophobic Guests by Self‐Assembled M 4 L 6 Cobalt and Nickel Cages
Subtle differences in metal-ligand bond lengths between a series of [M(4)L(6)](4-) tetrahedral cages, where M = Fe(II), Co(II), or Ni(II), were observed to result in substantial differences in affinity for hydrophobic guests in water. Changing the metal ion from iron(II) to cobalt(II) or nickel(II) increases the size of the interior cavity of the cage and allows encapsulation of larger guest molecules. NMR spectroscopy was used to study the recognition properties of the iron(II) and cobalt(II) cages towards small hydrophobic guests in water, and single-crystal X-ray diffraction was used to study the solid-state complexes of the iron(II) and nickel(II) cages.
Innentitelbild: A Self-Assembled M8L6 Cubic Cage that Selectively Encapsulates Large Aromatic Guests (Angew. Chem. 15/2011)
An Octanuclear Metallosupramolecular Cage Designed To Exhibit Spin-Crossover Behavior.
By employing the subcomponent self-assembly approach utilizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin or its zinc(II) complex, 1H-4-imidazolecarbaldehyde, and either zinc(II) or iron(II) salts, we were able to prepare O-symmetric cages having a confined volume of ca. 1300 Å3 . The use of iron(II) salts yielded coordination cages in the high-spin state at room temperature, manifesting spin-crossover in solution at low temperatures, whereas corresponding zinc(II) salts led to the corresponding diamagnetic analogues. The new cages were characterized by synchrotron X-ray crystallography, high-resolution mass spectrometry, and NMR, Mössbauer, IR, and UV/Vis spectroscopy. The cage structures…
A self-assembled M8L6 cubic cage that selectively encapsulates large aromatic guests.
Porphyrins cubed: A series of self-assembled M8L6 cubic cages that enclose a volume in excess of 1300 A3 were synthesized (see scheme). The porphyrinic walls of the cubes provide favorable sites for pnp interactions, leading to selectivity between large and chemically similar aromatic guests: three molecules of coronene are incorporated and the higher fullerenes C70nC84 are selectively bound in the presence of
Titelbild: An Unlockable-Relockable Iron Cage by Subcomponent Self-Assembly (Angew. Chem. 43/2008)
CCDC 1451726: Experimental Crystal Structure Determination
Related Article: Niklas Struch, Christoph Bannwarth, Tanya K. Ronson, Yvonne Lorenz, Bernd Mienert, Norbert Wagner, Marianne Engeser, Eckhard Bill, Rakesh Puttreddy, Kari Rissanen, Johannes Beck, Stefan Grimme, Jonathan R. Nitschke, Arne Lützen|2017|Angew.Chem.,Int.Ed.|56|4930|doi:10.1002/anie.201700832