0000000001305824

AUTHOR

Stephanie Bland

The role of fish life histories in allometrically scaled food‐web dynamics

Body size determines key ecological and evolutionary processes of organisms. Therefore, organisms undergo extensive shifts in resources, competitors, and predators as they grow in body size. While empirical and theoretical evidence show that these size‐dependent ontogenetic shifts vastly influence the structure and dynamics of populations, theory on how those ontogenetic shifts affect the structure and dynamics of ecological networks is still virtually absent. Here, we expand the Allometric Trophic Network (ATN) theory in the context of aquatic food webs to incorporate size‐structure in the population dynamics of fish species. We do this by modifying a food web generating algorithm, the nic…

research product

Data from: The role of fish life histories in allometrically scaled food-web dynamics

1. Body size determines key ecological and evolutionary processes of organisms. Therefore, organisms undergo extensive shifts in resources, competitors and predators as they grow in body size. While empirical and theoretical evidence show that these size-dependent ontogenetic shifts vastly influence the structure and dynamics of populations, theory on how those ontogenetic shifts affect the structure and dynamics of ecological networks is still virtually absent. 2. Here, we expand the Allometric Trophic Network (ATN) theory in the context of aquatic food webs to incorporate size-structure in the population dynamics of fish species. We do this by modifying a food web generating algorithm, th…

research product