0000000001305939
AUTHOR
Elisabet Aguiló
Luminescent alkynyl-gold(i) coumarin derivatives and their biological activity
The synthesis and characterization of three propynyloxycoumarins are reported in this work together with the formation of three different series of gold(i) organometallic complexes. Neutral complexes are constituted by water soluble phosphines (PTA and DAPTA) which confer water solubility to them. The X-ray crystal structure of 7-(prop-2-in-1-yloxy)-1-benzopyran-2-one and its corresponding dialkynyl complex is also shown and the formation of rectangular dimers for the gold derivative in the solid state can be observed. A detailed analysis of the absorption and emission spectra of both ligands and complexes allows us to attribute the luminescent behaviour to the coumarin organic ligand. More…
A coumarin based gold(i)-alkynyl complex: a new class of supramolecular hydrogelators.
A phosphine-gold(I)-alkynyl-coumarin complex, [Au{7-(prop-2-ine-1-yloxy)-1-benzopyran-2-one}(DAPTA)] (1), was synthesized and the formation of long luminescent fibers in solution was characterized via fluorescence microscopy and dynamic light scattering. The fibers presented strong blue and green luminescence, suggesting that the gold(I) in the complex increased intersystem crossing due to the heavy atom effect, resulting in a significant increase in triplet emission. The X-ray structure of the fibers indicates that both aurophilic, π–π interactions and hydrogen bonding contribute to their formation in aqueous solvents.
A coumarin based gold(I)-alkynyl complex: a new class of supramolecular hydrogelators
A phosphine-gold(I)-alkynyl-coumarin complex, [Au{7-(prop-2-ine-1-yloxy)-1-benzopyran-2-one}- (DAPTA)] (1), was synthesized and the formation of long luminescent fibers in solution was characterized via fluorescence microscopy and dynamic light scattering. The fibers presented strong blue and green luminescence, suggesting that the gold(I) in the complex increased intersystem crossing due to the heavy atom effect, resulting in a significant increase in triplet emission. The X-ray structure of the fibers indicates that both aurophilic, π–π interactions and hydrogen bonding contribute to their formation in aqueous solvents. peerReviewed
CCDC 955661: Experimental Crystal Structure Determination
Related Article: Julià Arcau, Vincent Andermark, Elisabet Aguiló, Albert Gandioso, Artur Moro, Mario Cetina, João Carlos Lima, Kari Rissanen, Ingo Ott, Laura Rodríguez|2014|Dalton Trans.|43|4426|doi:10.1039/C3DT52594E
CCDC 955660: Experimental Crystal Structure Determination
Related Article: Julià Arcau, Vincent Andermark, Elisabet Aguiló, Albert Gandioso, Artur Moro, Mario Cetina, João Carlos Lima, Kari Rissanen, Ingo Ott, Laura Rodríguez|2014|Dalton Trans.|43|4426|doi:10.1039/C3DT52594E
CCDC 1026387: Experimental Crystal Structure Determination
Related Article: Artur J. Moro, Bertrand Rome, Elisabet Aguiló, Julià Arcau, Rakesh Puttreddy, Kari Rissanen, João Carlos Lima, Laura Rodríguez|2015|Org.Biomol.Chem.|13|2026|doi:10.1039/C4OB02077D