0000000001305983

AUTHOR

Alessandro Stroppa

showing 4 related works from this author

Viewpoint: Atomic-Scale Design Protocols toward Energy, Electronic, Catalysis, and Sensing Applications

2019

Nanostructured materials are essential building blocks for the fabrication of new devices for energy harvesting/storage, sensing, catalysis, magnetic, and optoelectronic applications. However, because of the increase of technological needs, it is essential to identify new functional materials and improve the properties of existing ones. The objective of this Viewpoint is to examine the state of the art of atomic-scale simulative and experimental protocols aimed to the design of novel functional nanostructured materials, and to present new perspectives in the relative fields. This is the result of the debates of Symposium I "Atomic-scale design protocols towards energy, electronic, catalysis…

010405 organic chemistrySensing applicationsChemistryNanostructured materials: Physics [G04] [Physical chemical mathematical & earth Sciences]Physik (inkl. Astronomie)010402 general chemistry01 natural sciencesAtomic units0104 chemical sciencesInorganic Chemistry: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Systems engineeringMultilayers | Interfaces (materials) | Individual layermaterials theory computational DFT modellingPhysical and Theoretical ChemistryEnergy harvestingEnergy (signal processing)Inorganic Chemistry
researchProduct

Cyano-bridged perovskite [(CH3)3NOH]2[KM(CN)6],[M: Fe(III), Co(III)] for high-temperature multi-axial ferroelectric applications with enhanced therma…

2020

Highly stable ferroelectrics with reversible high-temperature phase transitions and switchable nonlinear optical behaviour are much coveted targets for emerging optoelectronic applications. Here, we demonstrate a cyano-bridged perovskite [(CH3)3NOH]2[KCo(CN)6] (TMAO-Co), a new analogue of the multi-axial ferroelectric [(CH3)3NOH]2[KFe(CN)6] (TMAO-Fe) with improved thermal stability and enhanced second-order nonlinear optical response. Indeed, for TMAO-Co the Curie temperature (Tc) is shifted to a higher value of ca. 416 K (improvement by ca. 10 K versusTMAO-Fe); the separation between Tc and the decomposition threshold is 46 K. TMAO-Co is a biaxial ferroelectric as revealed by P(E) hysteres…

Phase transitionMaterials scienceInfraredGeneral ChemistryMolecular physicsFerroelectricitysymbols.namesakeMaterials ChemistrysymbolsCurie temperatureThermal stabilityRaman spectroscopyPerovskite (structure)Monoclinic crystal systemJournal of Materials Chemistry C
researchProduct

CCDC 2022722: Experimental Crystal Structure Determination

2020

Related Article: Magdalena Rok, Agnieszka Ciżman, Bartosz Zarychta, Jan K. Zaręba, Monika Trzebiatowska, Mirosław Mączka, Alessandro Stroppa, Shurong Yuan, Anthony E. Phillips, Grażyna Bator|2020|J.Mater.Chem.C|8|17491|doi:10.1039/D0TC04527F

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-dicyano-bis(trimethylammoniohydroxy)-cobalt-potassium)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2022723: Experimental Crystal Structure Determination

2020

Related Article: Magdalena Rok, Agnieszka Ciżman, Bartosz Zarychta, Jan K. Zaręba, Monika Trzebiatowska, Mirosław Mączka, Alessandro Stroppa, Shurong Yuan, Anthony E. Phillips, Grażyna Bator|2020|J.Mater.Chem.C|8|17491|doi:10.1039/D0TC04527F

catena-(bis(hydroxy(trimethyl)ammonium) hexakis(mu-cyano)-cobalt-potassium)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct