0000000001306065
AUTHOR
Xinquan Hu
Constrained formation of 2-(1-(arylimino)ethyl)-7-arylimino-6,6-dimethylcyclopentapyridines and their cobalt(ii) chloride complexes: synthesis, characterization and ethylene polymerization
A series of 2-(1-(arylimino)ethyl)-7-arylimino-6,6-dimethylcyclopentapyridine derivatives (L1-L5) was synthesized, and individually reacted with cobalt(II) chloride to form the corresponding cobalt chloride complexes (C1-C4). These compounds were characterized, and the single crystal X-ray diffraction for two representative cobalt complexes was carried out. The molecular structures indicate that 2,7-bis(arylimino)cyclopentapyridines act as tridentate ligands; however, one of the Co-N coordinative bonds is weak due to the spatial separation of nitrogen atoms. Upon activation with either MAO or MMAO, all cobalt complexes exhibit catalytic activities toward ethylene. Polymerization takes place…
2-(1-Aryliminoethyl)-9-arylimino-5,6,7,8- tetrahydrocycloheptapyridyl iron(II) dichloride: synthesis, characterization, and the highly active and tunable active species in ethylene polymerization
A series of 2-(1-arylimino)ethyl-9-arylimino-5,6,7,8-tetrahydrocycloheptapyridine derivatives was synthesized and fully characterized, and thereafter reacted with iron dichloride to form their corresponding iron(II) complexes. The single crystals of representative organic and iron complex compounds were obtained and analyzed by the X-ray diffraction analysis, indicating the distorted bipyramidal geometry around the iron core. Moreover, DFT calculations were performed on selected species to determine their structural features. On treatment with either MAO or MMAO, all iron complex pre-catalysts showed high activities (up to 1.56 × 10(7) gPE mol(-1)(Fe) h(-1)) toward ethylene polymerization. …
2-(N,N-Diethylaminomethyl)-6,7-trihydroquinolinyl-8-ylideneamine-Ni(ii) chlorides: application in ethylene dimerization and trimerization
A series of Ni(II) complexes with the general formula [2-((NEt2)Me)-8-{N(Ar)}C9H8N]NiCl2, where Ar = 2,6-Me2C6H3 in Ni1, 2,6-Et2C6H3 in Ni2, 2,6-i-Pr2C6H3 in Ni3, 2,4,6-Me3C6H2 in Ni4, 2,6-Et2-4-MeC6H2 in Ni5, and 2,4,6-t-Bu3C6H2 in Ni6, has been prepared using a one-pot reaction of 2-(N,N-diethylaminomethyl)-6,7-dihydroquinolin-8(5H)-one with the corresponding aniline and nickel dichloride hexahydrate. The resultant complexes were characterized using elemental analysis and FT-IR spectroscopy, while the mononuclear Ni1 and Ni3 were also the subject of single-crystal X-ray diffraction study. On activation with MMAO, the complexes Ni1–Ni6 displayed good activity in ethylene oligomerization, f…
Ethylene oligomerization with 2-hydroxymethyl-5,6,7-trihydroquinolinyl-8-ylideneamine-Ni(II) chlorides
Abstract A series of Ni complexes of the general formula [2-(MeOH)-8-{N(Ar)}C9H8N]NiCl2, where Ar = 2,6-Me2C6H3 in Ni1; 2,6-Et2C6H3 in Ni2; 2,6-i-Pr2C6H3 in Ni3; 2,4,6-Me3C6H2 in Ni4; 2,6-Et2-4-MeC6H2 in Ni5 and 2,4,6-t-Bu3C6H2 in Ni6 has been synthesized and characterized by elemental analysis and IR spectroscopy. On activation with MMAO or Et2AlCl, these complexes showed high activity in ethylene oligomerization, reaching 2.23 × 106 g·mol–1 (Ni) h–1 at 30 °C with the Al/Ni ratio of 5500 and 9.11 × 105 g·mol–1 (Ni) h–1 with the Al/Ni of 800, respectively. Moreover, the content of α-C4 indicated high selectivity exceeding 99% in the Ni/Et2AlCl system. Comparing with the previous report by o…
2-Chloro/phenyl-7-arylimino-6,6-dimethylcyclopenta[b]pyridylnickel chlorides: Synthesis, characterization and ethylene oligomerization
Abstract 2-Chloro/phenyl-7-arylimino-6,6-dimethylcyclopenta[b]pyridylnickel chlorides (Ni1–Ni8) were synthesized from the respective ligands L1–L8 and characterized. Upon activation with either methylaluminoxane (MAO) or ethylaluminium sesquichloride (EASC), they show high catalytic activity of up to 10.84 × 106 g(oligomer) mol− 1(Ni) h− 1 in ethylene oligomerization. The products range from butenes to dodecenes for Ni1–Ni4, but are limited to butenes and hexenes in the case of Ni5–Ni8. DFT calculations indicate that the Ni C bond length in the model alkyl complexes depends both on the nature of the substituents at the heterocycles and the kind of the alkyl group, shedding some light on the…
Nickel(II) complexes with sterically hindered 5,6,7-trihydroquinoline derivatives selectively dimerizing ethylene to 1-butene
A series of nickel complexes bearing N,N-bidentate ligands has been synthesized and characterized by elemental analysis and infrared (IR) spectroscopy. High ethylene dimerization activity, reaching 2.43 × 106 g mol−1(Ni)h−1, was achieved by using these complexes as precatalysts activated with Me2AlCl. Moreover, the selectivity to obtain α-C4 was high (93%–96%). Comparing with the previous report by our group, the higher activity and selectivity may be attributed to the substituent at the 2-position within the ligand, creating the steric hindrance around the metal atom.
CCDC 2124204: Experimental Crystal Structure Determination
Related Article: Wenhua Lin, Ming Liu, Lei Xu, Yanping Ma, Liping Zhang, Zygmunt Flisak, Xinquan Hu, Tongling Liang, Wen‐Hua Sun|2022|Appl.Organomet.Chem.|36|e6596|doi:10.1002/aoc.6596
CCDC 1554541: Experimental Crystal Structure Determination
Related Article: Hongyi Suo, Youfu Zhang, Zhifeng Ma, Wenhong Yang, Zygmunt Flisak, Xiang Hao, Xinquan Hu, Wen-Hua Sun|2017|Catalysis Communications|102|26|doi:10.1016/j.catcom.2017.08.021
CCDC 1008609: Experimental Crystal Structure Determination
Related Article: Fang Huang, Qifeng Xing, Tongling Liang, Zygmunt Flisak, Bin Ye, Xinquan Hu, Wenhong Yang, Wen-Hua Sun|2014|Dalton Trans.|43|16818|doi:10.1039/C4DT02102A
CCDC 1008610: Experimental Crystal Structure Determination
Related Article: Fang Huang, Qifeng Xing, Tongling Liang, Zygmunt Flisak, Bin Ye, Xinquan Hu, Wenhong Yang, Wen-Hua Sun|2014|Dalton Trans.|43|16818|doi:10.1039/C4DT02102A
CCDC 1008608: Experimental Crystal Structure Determination
Related Article: Fang Huang, Qifeng Xing, Tongling Liang, Zygmunt Flisak, Bin Ye, Xinquan Hu, Wenhong Yang, Wen-Hua Sun|2014|Dalton Trans.|43|16818|doi:10.1039/C4DT02102A
CCDC 2005997: Experimental Crystal Structure Determination
Related Article: Jiaxin Li, Yanping Ma, Xinquan Hu, Zygmunt Flisak, Liang Tongling, Wen-Hua Sun|2020|New J.Chem.|44|17047|doi:10.1039/D0NJ04003G
CCDC 1054235: Experimental Crystal Structure Determination
Related Article: Junjun Ba, Shizhen Du, Erlin Yue, Xinquan Hu, Zygmunt Flisak, Wen-Hua Sun|2015|RSC Advances|5|32720|doi:10.1039/C5RA04722F
CCDC 2124203: Experimental Crystal Structure Determination
Related Article: Wenhua Lin, Ming Liu, Lei Xu, Yanping Ma, Liping Zhang, Zygmunt Flisak, Xinquan Hu, Tongling Liang, Wen‐Hua Sun|2022|Appl.Organomet.Chem.|36|e6596|doi:10.1002/aoc.6596
CCDC 2005998: Experimental Crystal Structure Determination
Related Article: Jiaxin Li, Yanping Ma, Xinquan Hu, Zygmunt Flisak, Liang Tongling, Wen-Hua Sun|2020|New J.Chem.|44|17047|doi:10.1039/D0NJ04003G
CCDC 1054234: Experimental Crystal Structure Determination
Related Article: Junjun Ba, Shizhen Du, Erlin Yue, Xinquan Hu, Zygmunt Flisak, Wen-Hua Sun|2015|RSC Advances|5|32720|doi:10.1039/C5RA04722F