0000000001306800

AUTHOR

Klaus Rademann

showing 5 related works from this author

Detecting Crystalline Nonequilibrium Phases on the Nanometer Scale

2012

The use of Automated electron Diffraction Tomography (ADT) is presented as a novel approach for crystallization studies at the nanometer scale for nonequilibrium phases. Here, ADT was applied to elucidate the structural identity of the recently reported hexagonal morphology of caffeine crystals, which grow only on specific surfaces. Caffeine was crystallized from solution on a specially treated TEM carbon grid. The analysis of ADT data revealed that the lattice parameters of these hexagons match those of the high temperature α- form of caffeine. Furthermore, it was observed that in this hexagonal morphology, the α-form remained stable for a prolonged period of time. The stabilization of hex…

Materials sciencegenetic structuresHexagonal crystal systemNon-equilibrium thermodynamicsGeneral ChemistryCondensed Matter Physicslaw.inventionCrystallographyElectron diffractionlawChemical physicsLattice (order)General Materials ScienceNanometreCrystallizationCrystal Growth & Design
researchProduct

The crystallisation of copper(ii) phenylphosphonates

2016

The crystal structures and syntheses of four different copper(II) phenylphosphonates, the monophenylphosphonates α-, β-, and γ-Cu(O3PC6H5)·H2O (α-CuPhPmH (1) β-CuPhPmH (2) and γ-CuPhPmH (3)), and the diphosphonate Cu(HO3PC6H5)2·H2O (CuPhP2mH (4)), are presented. The compounds were synthesized from solution at room temperature, at elevated temperature, under hydrothermal conditions, and mechanochemical conditions. The structures of α-CuPhPmH (1) and CuPhP2mH (4) were solved from powder X-ray diffraction data. The structure of β-CuPhPmH (2) was solved by single crystal X-ray analysis. The structures were validated by extended X-ray absorption fine structure (EXAFS) and DTA analyses. Disorder …

Materials scienceExtended X-ray absorption fine structurechemistry.chemical_element02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCopperHydrothermal circulation0104 chemical scienceslaw.inventionInorganic ChemistryCrystallographyElectron diffractionchemistrylawCrystallizationAbsorption (chemistry)0210 nano-technologySingle crystalDalton Transactions
researchProduct

CCDC 1490687: Experimental Crystal Structure Determination

2016

Related Article: Manuel Wilke, Anke Kabelitz, Tatiana E. Gorelik, Ana Guilherme Buzanich, Uwe Reinholz, Ute Kolb, Klaus Rademann, Franziska Emmerling|2016|Dalton Trans.|45|17453|doi:10.1039/C6DT02904C

Space GroupCrystallographyCrystal Systemcatena-[(mu-phenylphosphonato)-aqua-copper(ii)]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1490689: Experimental Crystal Structure Determination

2016

Related Article: Manuel Wilke, Anke Kabelitz, Tatiana E. Gorelik, Ana Guilherme Buzanich, Uwe Reinholz, Ute Kolb, Klaus Rademann, Franziska Emmerling|2016|Dalton Trans.|45|17453|doi:10.1039/C6DT02904C

Space GroupCrystallographyCrystal Systemcatena-[(mu-aqua)-bis(mu-hydrogen phenylphosphonato)-copper(ii)]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1490688: Experimental Crystal Structure Determination

2016

Related Article: Manuel Wilke, Anke Kabelitz, Tatiana E. Gorelik, Ana Guilherme Buzanich, Uwe Reinholz, Ute Kolb, Klaus Rademann, Franziska Emmerling|2016|Dalton Trans.|45|17453|doi:10.1039/C6DT02904C

Space GroupCrystallographyCrystal Systemcatena-[(mu-phenylphosphonato)-aqua-copper(ii)]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct