0000000001307170
AUTHOR
Concepció Rovira
Magnetic molecular metals based on the organic donor molecule BET (BET = Bis(ethylenethio)tetrathiafulvalene): The series BET2[MCI4] (M3⊕= Ga, Fe)
Hybrid Molecular Materials Based upon Organic π-Electron Donors and Metal Complexes. Radical Salts of Bis(ethylenethia)tetrathiafulvalene (BET-TTF) with the Octahedral Anions Hexacyanoferrate(III) and Nitroprusside. The First Kappa Phase in the BET-TTF Family
The synthesis, structure, and physical characterization of two new radical salts formed with the organic donor bis(ethylenethia)tetrathiafulvalene (BET-TTF) and the octahedral anions hexacyanoferrate(III), [Fe(CN)(6)](3-), and nitroprusside, [Fe(CN)(5)NO](2-), are reported. These salts are (BET-TTF)(4)(NEt(4))(2)[Fe(CN)(6)] (1) (monoclinic space group C2/c with a = 38.867(7) A, b = 8.438(8) A, c = 11.239(6) A, beta = 90.994(9) degrees, V = 3685(4) A(3), Z = 4) and (BET-TTF)(2)[Fe(CN)(5)NO].CH(2)Cl(2) (2) (monoclinic space group C2/c with a = 16.237(6) A, b = 18.097(8) A, c = 12.663(7) A, beta = 106.016(9) degrees, V = 3576(3) A(3), Z = 4). In salt 1 the organic BET-TTF molecules are packed …
Coexistence of ferro- and antiferromagnetic interactions in a metal-organic radical-based (6,3)-helical network with large channels.
A metal–organic open-framework with an unprecedented (6,3)-helical topology, large channels and mixed ferro- and antiferromagnetic interactions has been synthesized using a three-connecting tricarboxylic polychlorotriphenylmethyl radical and Co(II) ions. Lloret Pastor, Francisco, Francisco.Lloret@uv.es
A New Valence Tautomerism Example in an Electroactive Ferrocene Substituted Triphenylmethyl Radical
A new molecular system combining an open-shell organic radical that acts as an acceptor group, different from an o-quinone moiety, covalently linked to a ferrocene moiety, acting as the donor group, is shown to exhibit valence tautomerism.
Allocation of Ambipolar Charges on an Organic Diradical with a Vinylene-Phenylenediyne Bridge.
Two redox and magnetically active perchlorotriphenylmethyl (• PTM) radical units have been connected as end-capping groups to a bis(phenylene)diyne chain through vinylene linkers. Negative and positive charged species have been generated, and the influence of the bridge on their stabilization is discussed. Partial reduction of the electron-withdrawing • PTM radicals results in a class-II mixed-valence system with the negative charge located on the terminal PTM units, proving the efficiency of the conjugated chain for the electron transport between the two terminal sites. Counterintuitively, the oxidation process does not occur along the electron-rich bridge but on the vinylene units. The • …
Role of the Open-Shell Character on the Pressure-Induced Conductivity of an Organic Donor-Acceptor Radical Dyad
Single‐component conductors based on neutral organic radicals have received a lot of attention due to the possibility that the unpaired electron can serve as a charge carrier without the need of a previous doping process. Although most of these systems are based on delocalized planar radicals, we present here a nonplanar and spin localized radical based on a tetrathiafulvalene (TTF) moiety, linked to a perchlorotriphenylmethyl (PTM) radical by a conjugated bridge, which exhibits a semiconducting behavior upon application of high pressure. The synthesis, electronic properties, and crystal structure of this neutral radical TTF‐Ph‐PTM derivative (1) are reported and implications of its crystal…
Tetrathiafulvalene-Based Mixed-Valence Acceptor-Donor-Acceptor Triads: A Joint Theoretical and Experimental Approach
This work presents a joint theoretical and experimental characterisation of the structural and electronic properties of two tetrathiafulvalene (TTF)-based acceptor-donor-acceptor triads (BQ-TTF-BQ and BTCNQ-TTF - BTCNQ; BQ is naphthoquinone and BTCNQ is benzotetracyano-p-quinodimethane) in their neutral and reduced states. The study is performed with the use of electrochemical, electron paramagnetic resonance (EPR), and UV/Vis/NIR spectroelectrochemical techniques guided by quantum-chemical calculations. Emphasis is placed on the mixed-valence properties of both triads in their radical anion states. The electrochemical and EPR results reveal that both BQ-TTF-BQ and BTCNQ-TTF-BTCNQ triads in…
Structure Determination from Powder X-Ray Diffraction Data of a Hydrogen-Bonded Molecular Solid with Competing Ferromagnetic and Antiferromagnetic Interactions: The 2-(3,4-Dihydroxyphenyl)-α-Nitronyl Nitroxide Radical
Von den Pulver-Röntgenbeugungsdaten zur Struktur eines Molekülkristalls mit Wasserstoffbrückenbindungen und konkurrierenden ferromagnetischen und antiferromagnetischen Wechselwirkungen – das 2-(3,4-Dihydroxy-phenyl)-α-nitronylnitroxid-Radikal
The Interplay of Inverted Redox Potentials and Aromaticity in the Oxidized States of New π-Electron Donors: 9-(1,3-Dithiol-2-ylidene)fluorene and 9-(1,3-Dithiol-2-ylidene)thioxanthene Derivatives
Derivatives of 9-(1,3-dithiol-2-ylidene)fluorene (9) and 9-(1,3-dithiol-2-ylidene)thioxanthene (10) have been synthesised using Horner-Wadsworth-Emmons reactions of (1,3-dithiol-2-yl)phosphonate reagents with fluorenone and thioxanthen-9-one. X-ray crystallography, solution electrochemistry, optical spectroscopy, spectroelectrochemistry and simultaneous electrochemistry and electron paramagnetic resonance (SEEPR), combined with theoretical calculations performed at the B3P86/6-31G** level, elucidate the interplay of the electronic and structural properties in these molecules. These compounds are strong two-electron donors, and the oxidation potentials depend on the electronic structure of t…
CCDC 1817871: Experimental Crystal Structure Determination
Related Article: Manuel Souto, Maria Chiara Gullo, HengBo Cui, Nicola Casati, Fabio Montisci, Harald O. Jeschke, Roser Valentí, Imma Ratera, Concepció Rovira, Jaume Veciana|2018|Chem.-Eur.J.|24|5500|doi:10.1002/chem.201800881
CCDC 1817872: Experimental Crystal Structure Determination
Related Article: Manuel Souto, Maria Chiara Gullo, HengBo Cui, Nicola Casati, Fabio Montisci, Harald O. Jeschke, Roser Valentí, Imma Ratera, Concepció Rovira, Jaume Veciana|2018|Chem.-Eur.J.|24|5500|doi:10.1002/chem.201800881