6533b86ffe1ef96bd12ce733

RESEARCH PRODUCT

The Interplay of Inverted Redox Potentials and Aromaticity in the Oxidized States of New π-Electron Donors: 9-(1,3-Dithiol-2-ylidene)fluorene and 9-(1,3-Dithiol-2-ylidene)thioxanthene Derivatives

Andrei S. BatsanovEnrique OrtíSamia AmriouChangsheng WangJosé Vidal-gancedoConcepció RoviraMartin R. BryceRafael ViruelaDmitrii F. PerepichkaDmitrii F. Perepichka

subject

Organic ChemistryThioxantheneDithiolAromaticitySulfoxideGeneral ChemistryFluorenePhotochemistryCatalysisDicationchemistry.chemical_compoundchemistryFluorenoneRadical ion

description

Derivatives of 9-(1,3-dithiol-2-ylidene)fluorene (9) and 9-(1,3-dithiol-2-ylidene)thioxanthene (10) have been synthesised using Horner-Wadsworth-Emmons reactions of (1,3-dithiol-2-yl)phosphonate reagents with fluorenone and thioxanthen-9-one. X-ray crystallography, solution electrochemistry, optical spectroscopy, spectroelectrochemistry and simultaneous electrochemistry and electron paramagnetic resonance (SEEPR), combined with theoretical calculations performed at the B3P86/6-31G** level, elucidate the interplay of the electronic and structural properties in these molecules. These compounds are strong two-electron donors, and the oxidation potentials depend on the electronic structure of the oxidised state. Two, single-electron oxidations (E(1)oxE(1)ox) were observed for 9-(1,3-dithiol-2-ylidene)fluorene systems (9). In contrast, derivatives of 9-(1,3-dithiol-2-ylidene)thioxanthene (10) display the unusual phenomenon of inverted potentials (E(1)oxE(1)ox) resulting in a single, two-electron oxidation process. The latter is due to the aromatic structure of the thioxanthenium cation (formed on the loss of a second electron), which stabilises the dication state (10(2+)) compared with the radical cation. This contrasts with the nonaromatic structure of the fluorenium cation of system 9. The two-electron oxidation wave in the thioxanthene derivatives is split into two separate one-electron waves in the corresponding sulfoxide and sulfone derivatives 27-29 owing to destabilisation of the dication state.

https://doi.org/10.1002/chem.200501326