0000000001307193

AUTHOR

Julia Contreras-garcía

showing 10 related works from this author

High pressure theoretical and experimental analysis of the bandgap of BaMoO4, PbMoO4, and CdMoO4

2019

We have investigated the origin of the bandgap of BaMoO4, PbMoO4, and CdMoO4 crystals on the basis of optical absorption spectroscopy experiments and ab initio electronic band structure, density of states, and electronic localization function calculations under high pressure. Our study provides an accurate determination of the bandgaps Eg and their pressure derivatives d E g / dP for BaMoO4 (4.43 eV, −4.4 meV/GPa), PbMoO4 (3.45 eV, −53.8 meV/GPa), and CdMoO4 (3.71 eV, −3.3 meV/GPa). The absorption edges were fitted with the Urbach exponential model which we demonstrate to be the most appropriate for thick crystals with direct bandgaps. So far, the narrowing of the bandgap of distinct PbMoO4…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsAbsorption spectroscopyBand gapAb initio02 engineering and technology021001 nanoscience & nanotechnologyAntibonding molecular orbital01 natural sciencesDelocalized electron0103 physical sciencesDensity of statesDirect and indirect band gaps0210 nano-technologyElectronic band structure
researchProduct

Unveiling the role of the lone electron pair in sesquioxides at high pressure: compressibility of β-Sb2O3

2021

The structural, vibrational and electronic properties of the compressed beta-Sb2O3 polymorph, a.k.a. mineral valentinite, have been investigated in a joint experimental and theoretical study up to 23 GPa. The compressibility of the lattice parameters, unit-cell volume and polyhedral unit volume as well as the behaviour of its Raman- and IR-active modes under compression have been interpreted on the basis of ab initio theoretical simulations. Valentinite shows an unusual compressibility up to 15 GPa with four different pressure ranges, whose critical pressures are 2, 4, and 10 GPa. The pressure dependence of the main structural units, the lack of soft phonons, and the electronic density char…

Raman scatteringPhase transitionMaterials sciencePhononAb initioThermodynamics02 engineering and technologyValentinite01 natural sciencesVibrational propertiesInorganic ChemistrySb2O3Phase (matter)0103 physical sciences010302 applied physicsElectron pairStructural propertiesCompressibility021001 nanoscience & nanotechnologyX-ray diffractionHigh pressureElectronic propertiesFISICA APLICADAX-ray crystallographyCompressibility0210 nano-technologyElectronic densityDalton Transactions
researchProduct

Ordered helium trapping and bonding in compressed arsenolite: Synthesis ofAs4O6·2He

2016

Compression of arsenolite has been studied from a joint experimental and theoretical point of view. Experiments on this molecular solid at high pressures with different pressure-transmitting media have been interpreted thanks to state-of-the-art ab initio calculations. Our results confirm arsenolite as one of the most compressible minerals and provide evidence for ordered helium trapping above 3 GPa between adamantane-type $\mathrm{A}{\mathrm{s}}_{4}{\mathrm{O}}_{6}$ cages. Our calculations indicate that, at relatively small pressures, helium establishes rather localized structural bonds with arsenic forming a compound with stoichiometry $\mathrm{A}{\mathrm{s}}_{4}{\mathrm{O}}_{6}\ifmmode\c…

PhysicsElectron pairchemistry.chemical_element02 engineering and technologyTrappingengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCrystallographyMolecular solidchemistryAb initio quantum chemistry methodsMechanical stabilityArsenoliteengineering0210 nano-technologyStoichiometryHeliumPhysical Review B
researchProduct

Characterization and Decomposition of the Natural van der Waals SnSb2Te4 under Compression

2020

[EN] High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSb2Te4 into the high-pressure phases of its parent binary compounds (alpha-Sb2Te3 and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary…

Phase transitionContext (language use)[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciencesInorganic Chemistrysymbols.namesakeChemical structureCationsVan der Waalselectronic topologicalPhysical and Theoretical ChemistryCompressibility010405 organic chemistryChemistryCompressionDeformation0104 chemical scienceshigh pressuremetavalent bondingChemical physicsFISICA APLICADAMolecular vibration[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]symbolsCondensed Matter::Strongly Correlated ElectronsFermi resonanceSnSb2Te4pressure-induced decompositionvan der Waals forceTernary operationRaman spectroscopyRaman scatteringbonding characterInorganic Chemistry
researchProduct

Tuning Azoheteroarene Photoswitch Performance through Heteroaryl Design

2017

International audience; Photoswitchable compounds, which can be reversibly switched between two isomers by light, continue to attract significant attention for a wide array of applications. Azoheteroarenes represent a relatively new but understudied type of photoswitch, where one of the aryl rings from the conventional azobenzene class has been replaced with a five-membered heteroaromatic ring. Initial studies have suggested the azoheteroarenes – the arylazopyrazoles in particular – to have excellent photoswitching properties (quantitative switching and long Z isomer half-life). Here we present a systematic computational and experimental study to elucidate the origin of the long thermal hal…

CHEMICAL-REACTIONSMOLECULAR SWITCHESFUNCTIONAL RESPONSE THEORYChemistry Multidisciplinary010402 general chemistryRing (chemistry)Photochemistry01 natural sciencesBiochemistryCatalysischemistry.chemical_compoundColloid and Surface ChemistryAZO-COMPOUNDSPHOTOISOMERIZATION[CHIM]Chemical SciencesTO-TRANS ISOMERIZATIONAZOBENZENEScience & TechnologyPhotoswitch010405 organic chemistryArylSOLAR THERMAL STORAGEGeneral ChemistryCombinatorial chemistry0104 chemical sciencesChemistrychemistryAzobenzenePhysical SciencesEXCITATION-ENERGIESVISIBLE-LIGHT03 Chemical Sciences
researchProduct

Bending Carbon Nanoforms for Supramolecular Recognition: A Topological Study on Hemifullerene-Based Aggregates

2018

International audience; Buckybowls have risen as appealing fullerene fragment derivatives. Their intrinsic curvature has been exploited in the generation of host–guest supramolecular assemblies, not only through concave–convex complementarity but also through less-known concave–concave staggered arrangements. Whereas the stabilization of bowl-in-bowl dispositions has been ascribed to efficient π–π forces together with favorable dipole–dipole interactions, a detailed analysis on the forces guiding the formation of the staggered arrangements is missing so far. Herein, we present a thorough theoretical characterization of bowl-in-bowl vs staggered hemifullerene-based homodimers and heterodimer…

Fullerene010405 organic chemistryChemistrySupramolecular chemistrychemistry.chemical_elementBending010402 general chemistry01 natural sciences0104 chemical sciencesCharacterization (materials science)Chemical bondChemical physicsMoleculeDensity functional theory[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Physical and Theoretical ChemistryCarbonThe Journal of Physical Chemistry A
researchProduct

CCDC 1503532: Experimental Crystal Structure Determination

2017

Related Article: Joaquín Calbo, Claire E. Weston, Andrew J. P. White, Henry S. Rzepa, Julia Contreras-García, Matthew J. Fuchter|2017|J.Am.Chem.Soc.|139|1261|doi:10.1021/jacs.6b11626

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters14-dimethyl-3-nitro-1H-pyrazoleExperimental 3D Coordinates
researchProduct

CCDC 1503530: Experimental Crystal Structure Determination

2017

Related Article: Joaquín Calbo, Claire E. Weston, Andrew J. P. White, Henry S. Rzepa, Julia Contreras-García, Matthew J. Fuchter|2017|J.Am.Chem.Soc.|139|1261|doi:10.1021/jacs.6b11626

Space GroupCrystallographyCrystal System1-methyl-3-(phenyldiazenyl)-1H-124-triazoleCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1503531: Experimental Crystal Structure Determination

2017

Related Article: Joaquín Calbo, Claire E. Weston, Andrew J. P. White, Henry S. Rzepa, Julia Contreras-García, Matthew J. Fuchter|2017|J.Am.Chem.Soc.|139|1261|doi:10.1021/jacs.6b11626

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates1-methyl-4-(phenyldiazenyl)-1H-imidazole
researchProduct

CSD 2044072: Experimental Crystal Structure Determination

2020

Related Article: Juan Angel Sans, Francisco Javier Manjón, André Luis de Jesus Pereira, Javier Ruiz-Fuertes, Catalin Popescu, Alfonso Muñoz, Plácida Rodríguez-Hernández, Julio Pellicer-Porres, Vanesa Paula Cuenca-Gotor, Julia Contreras-García, Jordi Ibañez, and Virginia Monteseguro|2020|ICSD Communication|||

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct