0000000001307210
AUTHOR
Rohit Ghai
Key roles for freshwater A ctinobacteria revealed by deep metagenomic sequencing
Freshwater ecosystems are critical but fragile environments directly affecting society and its welfare. However, our understanding of genuinely freshwater microbial communities, constrained by our capacity to manipulate its prokaryotic participants in axenic cultures, remains very rudimentary. Even the most abundant components, freshwater Actinobacteria, remain largely unknown. Here, applying deep metagenomic sequencing to the microbial community of a freshwater reservoir, we were able to circumvent this traditional bottleneck and reconstruct de novo seven distinct streamlined actinobacterial genomes. These genomes represent three new groups of photoheterotrophic, planktonic Actinobacteria.…
Metagenomics of the Mucosal Microbiota of European Eels
ABSTRACT European eels are an economically important and threatened species that are prone to rapid collapse in farm conditions. Using metagenomics, we show that the eel mucosal microbiota has specific features distinguishing it from the surrounding aquatic community. This is a first step in dissecting the resident microbiota of this critical barrier that may have implications for maintenance of healthy eel populations.
Reconstruction of Diverse Verrucomicrobial Genomes from Metagenome Datasets of Freshwater Reservoirs
The phylum Verrucomicrobia contains freshwater representatives which remain poorly studied at the genomic, taxonomic, and ecological levels. In this work we present eighteen new reconstructed verrucomicrobial genomes from two freshwater reservoirs located close to each other (Tous and Amadorio, Spain). These metagenomeassembled genomes (MAGs) display a remarkable taxonomic diversity inside the phylum and comprise wide ranges of estimated genome sizes (from 1.8 to 6 Mb). Among all Verrucomicrobia studied we found some of the smallest genomes of the Spartobacteria and Opitutae classes described so far. Some of the Opitutae family MAGs were small, cosmopolitan, with a general heterotrophic met…
Novel Synechococcus Genomes Reconstructed from Freshwater Reservoirs
Freshwater picocyanobacteria including Synechococcus remain poorly studied at the genomic level, compared to their marine representatives. Here, using a metagenomic assembly approach we discovered two novel Synechococcus sp. genomes from two freshwater reservoirs Tous and Lake Lanier, both sharing 96% average nucleotide identity and displaying high abundance levels in these two lakes located at similar altitudes and temperate latitudes. These new genomes have the smallest estimated size (2.2 Mb) and average intergenic spacer length (20 bp) of any previously sequenced freshwater Synechococcus, which may contribute to their success in oligotrophic freshwater systems. Fluorescent in situ hybri…
Replicating phages in the epidermal mucosa of the eel (Anguilla anguilla)
In this work, we used the eel (Anguilla anguilla) as an animal model to test the hypothesis of Barr et al. (2013a,b) about the putative role of the epidermal mucosa as a phage enrichment layer. To this end, we analyzed the microbial content of the skin mucus of wild and farmed eels by using a metagenomic approach. We found a great abundance of replicating phage genomes (concatemers) in all the samples. They were assembled in four complete genomes of three Myovirus and one Podovirus. We also found evidences that ΦKZ and Podovirus phages could be part of the resident microbiota associated to the eel mucosal surface and persist on them over the time. Moreover, the viral abundance estimated by …
Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria
We describe a deep-branching lineage of marine Actinobacteria with very low GC content (33%) and the smallest free living cells described yet (cell volume ca. 0.013 μm(3)), even smaller than the cosmopolitan marine photoheterotroph, 'Candidatus Pelagibacter ubique'. These microbes are highly related to 16S rRNA sequences retrieved by PCR from the Pacific and Atlantic oceans 20 years ago. Metagenomic fosmids allowed a virtual genome reconstruction that also indicated very small genomes below 1 Mb. A new kind of rhodopsin was detected indicating a photoheterotrophic lifestyle. They are estimated to be ~4% of the total numbers of cells found at the site studied (the Mediterranean deep chloroph…
Wild eel microbiome reveals that skin mucus of fish could be a natural niche for aquatic mucosal pathogen evolution
Background Fish skin mucosal surfaces (SMS) are quite similar in composition and function to some mammalian MS and, in consequence, could constitute an adequate niche for the evolution of mucosal aquatic pathogens in natural environments. We aimed to test this hypothesis by searching for metagenomic and genomic evidences in the SMS-microbiome of a model fish species (Anguilla Anguilla or eel), from different ecosystems (four natural environments of different water salinity and one eel farm) as well as the water microbiome (W-microbiome) surrounding the host. Results Remarkably, potentially pathogenic Vibrio monopolized wild eel SMS-microbiome from natural ecosystems, Vibrio anguillarum/Vibr…
Additional file 1: Table S1. of Wild eel microbiome reveals that skin mucus of fish could be a natural niche for aquatic mucosal pathogen evolution
Metagenomes used to detect MGE. Table S2. General data for each metagenome and alpha diversity. Table S3. Contigs with MGE detected using the methodology described in Fig. 1. Figure S1. Sampling points, location and description. Figure S2. From nature to the laboratory: skin mucus sampling from wild eels and DNA extraction. Figure S3. Mobile genetic elements (MGE) detection workflow diagram. Figure S4. %GC content profiles of the eel’s SMS- and W-metagenomes. Figure S5. Wild eel’s versus farmed eel’s SMS metagenomes. Figure S6. V. metoecus M12v BLAST atlas. Figure S7. Schematic representation of VPI-2 in M12v. Figure S8. Main bacterial genera detected in eel’s SMS- and W-metagenomes. Figure…
Metagenomes of Mediterranean Coastal Lagoons
Coastal lagoons, both hypersaline and freshwater, are common, but still understudied ecosystems. We describe, for the first time, using high throughput sequencing, the extant microbiota of two large and representative Mediterranean coastal lagoons, the hypersaline Mar Menor, and the freshwater Albufera de Valencia, both located on the south eastern coast of Spain. We show there are considerable differences in the microbiota of both lagoons, in comparison to other marine and freshwater habitats. Importantly, a novel uncultured sulfur oxidizing Alphaproteobacteria was found to dominate bacterioplankton in the hypersaline Mar Menor. Also, in the latter prokaryotic cyanobacteria were almost exc…
Data from: Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing
Freshwaters ecosystems are critical but fragile environments directly affecting society and its welfare. However, our understanding of genuinely freshwater microbial communities, constrained by our capacity to manipulate its prokaryotic participants in axenic cultures, remains very rudimentary. Even the most abundant components, freshwater Actinobacteria, remain largely unknown. Here, applying deep metagenomic sequencing to the microbial community of a freshwater reservoir, we were able to circumvent this traditional bottleneck and reconstruct de novo seven distinct streamlined actinobacterial genomes. These genomes represent three new groups of photoheterotrophic, planktonic Actinobacteria…
Additional file 2: Table S1. of Wild eel microbiome reveals that skin mucus of fish could be a natural niche for aquatic mucosal pathogen evolution
Abundance and comparison of functions in water and skin-mucus surface microbiomes. (XLSX 646 kb)