0000000001307474

AUTHOR

I. Marti-vidal

Atmospheric turbulence in phase-referenced and wide-field interferometric images: Application to the SKA

Phase referencing is a standard calibration procedure in radio interferometry. It allows to detect weak sources by using quasi-simultaneous observations of closeby sources acting as calibrators. Therefore, it is assumed that, for each antenna, the optical paths of the signals from both sources are similar. However, atmospheric turbulence may introduce strong differences in the optical paths of the signals and affect, or even waste, phase referencing for cases of relatively large calibrator-to-target separations and/or bad weather. The situation is similar in wide-field observations, since the random deformations of the images, mostly caused by atmospheric turbulence, have essentially the sa…

research product

On the coherence loss in phase-referenced VLBI observations

Context: Phase referencing is a standard calibration technique in radio interferometry, particularly suited for the detection of weak sources close to the sensitivity limits of the interferometers. However, effects from a changing atmosphere and inaccuracies in the correlator model may affect the phase-referenced images, leading to wrong estimates of source flux densities and positions. A systematic observational study of signal decoherence in phase referencing, and its effects in the image plane, has not been performed yet. Aims: We systematically studied how the signal coherence in Very-Long-Baseline-Interferometry (VLBI) observations is affected by a phase-reference calibration at differ…

research product

A Decade of SN1993J: Discovery of Wavelength Effects in the Expansion Rate

We have studied the growth of the shell-like radio structure of supernova SN1993J in M81 from September 1993 through October 2003 with very-long-baseline interferometry (VLBI) observations at the wavelengths of 3.6, 6, and 18cm. For this purpose, we have developed a method to accurately determine the outer radius (R) of any circularly symmetric compact radio structure like SN1993J. The source structure of SN1993J remains circularly symmetric (with deviations from circularity under 2%) over almost 4000 days. We characterize the decelerated expansion of SN 1993J through approximately day 1500 after explosion with an expansion parameter $m= 0.845\pm0.005$ ($R \propto t^{m}$). However, from tha…

research product

Dynamical masses of the low-mass stellar binary AB Doradus B

Context. ABDoradus is the main system of the ABDoradus moving group. It is a quadruple system formed by two widely separated binaries of pre-main-sequence (PMS) stars: ABDor A/C and ABDor Ba/Bb. The pair ABDor A/C has been extensively studied and its dynamical masses have been determined with high precision, thus making of ABDor C a benchmark for calibrating PMS stellar models. If the orbit and dynamical masses of the pair ABDor Ba/Bb can be determined, they could not only play a similar role to that of ABDor C in calibrating PMS models, but would also help to better understand the dynamics of the whole ABDoradus system. Aims. We aim to determine the individual masses of the pair ABDor Ba/B…

research product

PKS1830-211 HDO, ND and NH_2_D spectra

VizieR online Data Catalogue associated with article published in journal Astronomy & Astrophysics with title 'Detection of deuterated molecules, but not of lithium hydride, in the z=0.89 absorber toward PKS 1830-211.' (bibcode: 2020A&A...637A...7M)

research product

S5 0836+710 image at 1.6GHz

VizieR online Data Catalogue associated with article published in journal Astronomy & Astrophysics with title 'S5 0836+710: An FRII jet disrupted by the growth of a helical instability?' (bibcode: 2012A&A...545A..65P)

research product

Sgr A* 1.3mm VLBI observations with the EHT in 2013

We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3mm (230GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional uv coverage in the N-S direction, and leads to a spatial resolution of ~30 {mu}as (~3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of ~4%-13% of the total flux density. We argue that such flux densities …

research product

3C 279 Event Horizon Telescope imaging

3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable gamma-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope (EHT) at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array (ALMA), at an angular resolution of ~20uarcsec (at a redshif…

research product