0000000001308064

AUTHOR

Terhi Maula

showing 4 related works from this author

2NH and 3OH are crucial structural requirements in sphingomyelin for sticholysin II binding and pore formation in bilayer membranes.

2013

AbstractSticholysin II (StnII) is a pore-forming toxin from the sea anemone Stichodactyla heliantus which belongs to the large actinoporin family. The toxin binds to sphingomyelin (SM) containing membranes, and shows high binding specificity for this lipid. In this study, we have examined the role of the hydrogen bonding groups of the SM long-chain base (i.e., the 2NH and the 3OH) for StnII recognition. We prepared methylated SM-analogs which had reduced hydrogen bonding capability from 2NH and 3OH. Both surface plasmon resonance experiments, and isothermal titration calorimetry measurements indicated that StnII failed to bind to bilayers containing methylated SM-analogs, whereas clear bind…

Models MolecularPore Forming Cytotoxic ProteinsMembrane permeabilizationLipid BilayersBiophysicsCalorimetryta3111Biochemistrychemistry.chemical_compoundCnidarian VenomsAnimalsComputer SimulationLipid bilayerta116Binding selectivityUnilamellar LiposomesPhosphocholineBinding SitesMolecular StructureChemistryHydrogen bondVesicleta1182Isothermal titration calorimetryHydrogen BondingCell BiologySurface Plasmon ResonanceProtein Structure TertiarySphingomyelinsKineticsMembraneSea AnemonesBiochemistryMolecular dockingIsothermal titration calorimetryBiophysicsPhosphatidylcholinesSphingomyelinProtein BindingBiochimica et biophysica acta
researchProduct

Structure–activity relationship of sphingomyelin analogs with sphingomyelinase from Bacillus cereus

2012

AbstractThe aim of this study was to examine how structural properties of different sphingomyelin (SM) analogs affected their substrate properties with sphingomyelinase (SMase) from Bacillus cereus. Using molecular docking and dynamics simulations (for SMase–SM complex), we then attempted to explain the relationship between SM structure and enzyme activity. With both micellar and monolayer substrates, 3O-methylated SM was found not to be degraded by the SMase. 2N-methylated SM was a substrate, but was degraded at about half the rate of its 2NH–SM control. PhytoPSM was readily hydrolyzed by the enzyme. PSM lacking one methyl in the phosphocholine head group was a good substrate, but PSM lack…

StereochemistryBiophysicsSphingomyelin phosphodiesteraseBiochemistryCatalysisSubstrate Specificitychemistry.chemical_compoundStructure-Activity RelationshipBacillus cereusBacterial ProteinsCatalytic DomainStructure–activity relationshipMagnesiumPhosphocholinechemistry.chemical_classificationbiologyMolecular StructureActive siteHead group methyl analogCell Biology2N-methylated sphingomyelinEnzyme assaySphingomyelinsEnzymeSphingomyelin PhosphodiesterasechemistryDocking (molecular)biology.proteinPhytosphingomyelinta11813O-methylated sphingomyelinSphingomyelinBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Decreased temperature increases the expression of a disordered bacterial late embryogenesis abundant (LEA) protein that enhances natural transformati…

2021

Late embryogenesis abundant (LEA) proteins are important players in the management of responses to stressful conditions, such as drought, high salinity, and changes in temperature. Many LEA proteins do not have defined three-dimensional structures, so they are intrinsically disordered proteins (IDPs) and are often highly hydrophilic. Although LEA-like sequences have been identified in bacterial genomes, the functions of bacterial LEA proteins have been studied only recently. Sequence analysis of outer membrane interleukin receptor I (BilRI) from the oral pathogen Aggregatibacter actinomycetemcomitans indicated that it shared sequence similarity with group 3/3b/4 LEA proteins. Comprehensive …

Cold shock proteinEmbryonic DevelopmentInfectious and parasitic diseasesRC109-216Aggregatibacter actinomycetemcomitansbakteeritkylmänkestävyysNMR spectroscopyBacterial Proteinsnmr spectroscopyDNA transformation competencelate embryogenesis abundant proteinHumansNMR-spektroskopiaPlant Proteinsaggregatibacter actinomycetemcomitanscold shock proteinlate embryogenesisBiochemistry and Molecular BiologyTemperatureIntrinsically Disordered Proteinsabundant proteindna transformation competencelämpötilaproteiinitBiokemi och molekylärbiologiResearch ArticleResearch PaperVirulence
researchProduct

Decreased temperature increases the expression of a disordered bacterial late embryogenesis abundant (LEA) protein that enhances natural transformati…

2021

Late embryogenesis abundant (LEA) proteins are important players in the management of responses to stressful conditions, such as drought, high salinity, and changes in temperature. Many LEA proteins do not have defined three-dimensional structures, so they are intrinsically disordered proteins (IDPs) and are often highly hydrophilic. Although LEA-like sequences have been identified in bacterial genomes, the functions of bacterial LEA proteins have been studied only recently. Sequence analysis of outer membrane interleukin receptor I (BilRI) from the oral pathogen Aggregatibacter actinomycetemcomitans indicated that it shared sequence similarity with group 3/3b/4 LEA proteins. Comprehensive …

researchProduct