0000000001308748

AUTHOR

Mika Lastusaari

showing 20 related works from this author

Series of Near-IR-Absorbing Transition Metal Complexes with Redox Active Ligands

2020

New soluble and intensely near-IR-absorbing transition metal (Ti, Zr, V, Ni) complexes were synthesized using a redox non-innocent N,N&rsquo

Spectrometry Mass Electrospray IonizationMagnetic Resonance SpectroscopyElectronsChemistry Techniques SyntheticCrystallography X-RayLigandsArticlelcsh:QD241-441Magneticslcsh:Organic chemistryX-Ray DiffractionCoordination ComplexesNickelTransition Elementsorgaaniset yhdisteetSpectroscopy Near-InfraredMolecular Structureredox-active ligandnon-innocent ligandsElectrochemical Techniquesliganditkompleksiyhdisteetmetal organic complexMetalsElectronicsOxidation-Reduction
researchProduct

A diamagnetic iron complex and its twisted sister – structural evidence on partial spin state change in a crystalline iron complex

2021

We report here the syntheses of a diamagnetic Fe complex [Fe(HL)2] (1), prepared by reacting a redox non-innocent ligand precursor N,N′-bis(3,5-di-tert-butyl-2-hydroxy-phenyl)-1,2-phenylenediamine (H4L) with FeCl3, and its phenoxazine derivative [Fe(L′)2] (2), which was obtained via intra-ligand cyclisation of the parent complex. Magnetic measurements, accompanied by spectroscopic, structural and computational analyses show that 1 can be viewed as a rather unusual Fe(III) complex with a diamagnetic ground state in the studied temperature range due to a strong antiferromagnetic coupling between the low-spin Fe(III) ion and a radical ligand. For a paramagnetic high-spin Fe(II) complex 2 it wa…

Materials scienceSpin states010405 organic chemistryLigand010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryParamagnetismCrystallographyCrystallinityUnpaired electronDiamagnetismGround stateSingle crystalDalton Transactions
researchProduct

Structural Modifications of Rb<sub>3</sub>RE(PO<sub>4</sub>)<sub>2</sub> Phases (RE = La, Gd, Y)

2001

CrystallographyMaterials scienceMechanics of MaterialsRietveld refinementMechanical EngineeringGeneral Materials ScienceCondensed Matter PhysicsMaterials Science Forum
researchProduct

The Influence of User-Selected Models on the Results of the Rietveld Refinement of the LaOCl Structure

1998

CrystallographyMaterials scienceMechanics of MaterialsRietveld refinementMechanical EngineeringStructure (category theory)General Materials ScienceCondensed Matter PhysicsMaterials Science Forum
researchProduct

Low temperature afterglow from SrAl 2 O 4 : Eu, Dy, B containing glass

2020

V.V. acknowledges the financial support of ERDF PostDoc project No. 1.1.1.2/VIAA/3/19/440 (University of Latvia Institute of Solid State Physics, Latvia) and LP the Academy of Finland (Flagship Programme, Photonics Research and Innovation PREIN 320165 and Academy Project -326418) for the financial support. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01- 2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART 2 .

Materials sciencePersistent luminescenceCenter of excellence02 engineering and technology114 Physical sciences7. Clean energy01 natural sciences0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]media_common.cataloged_instanceGeneral Materials ScienceEuropean unionmedia_common010302 applied physicsHorizon (archaeology)Mechanical EngineeringMetals and Alloys021001 nanoscience & nanotechnologyCondensed Matter PhysicsEngineering physicsLow temperature applicationsAfterglowPhosphate glassMechanics of Materials216 Materials engineering0210 nano-technology
researchProduct

Hackmanite—The Natural Glow-in-the-Dark Material

2020

“Glow-in-the-dark” materials are known to practically everyone who has ever traveled by airplane or cruise ship, since they are commonly used for self-lit emergency exit signs. The green afterglow, persistent luminescence (PeL), is obtained from divalent europium doped to a synthetic strontium aluminate, but there are also some natural minerals capable of afterglow. One such mineral is hackmanite, the afterglow of which has never been thoroughly investigated, even if its synthetic versions can compete with some of the best commercially available synthetic PeL materials. Here we combine experimental and computational data to show that the white PeL of natural hackmanite is generated and cont…

Materials scienceGeneral Chemical Engineeringchemistry.chemical_element02 engineering and technologyNatural mineral010402 general chemistry01 natural sciencesNatural (archaeology)Synthetic materialsSODALITEchemistry.chemical_compoundPersistent luminescenceMaterials ChemistryTUGTUPITESPECTRACOLORluminesenssiIRONStrontium aluminate[CHIM.MATE]Chemical Sciences/Material chemistryOPTICAL-PROPERTIESGeneral ChemistryRESONANCE021001 nanoscience & nanotechnology0104 chemical sciencesAfterglow[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryCENTERSPhysics and AstronomychemistryChemical physicsLUMINESCENCE0210 nano-technologyEuropiumLuminescenceChemistry of Materials
researchProduct

Low Temperature Afterglow from SrAl <sub>2</sub>O <sub>4</sub>: EU, Dy, B Containing Glass

2020

SrAl2O4: Eu, Dy, B particles were added in a phosphate glass (90NaPO3-10NaF (in mol%)) using the direct doping method. For the first time, the composition of the particles prior to and after embedding them in the glass was analysed using EPMA analysis. Boron was found to be incorporated in already distorted surroundings creating new trapping centers in the particles which are thought to be favourable for the tunnelling process and so for the afterglow at 10K. Despite the partial decomposition of the particles, the glass exhibit afterglow at low temperature confirming to be promising materials for low temperature applications.

Materials sciencechemistryDopingAnalytical chemistrychemistry.chemical_elementPartial decompositionTrappingElectron microprobeBoronQuantum tunnellingPhosphate glassAfterglowSSRN Electronic Journal
researchProduct

X-ray powder diffraction study of the stability of solid solutions in LaO(Cl1−xBrx)

1997

Abstract The formation of solid solutions in the LaO(Cl 1− x Br x ) series was studied by X-ray powder diffraction (XPD), Rietveld profile refinement and bond valence calculations. The LaO(Cl 1− x Br x ) (0 ≤ x ≤ 1, step 0.2, and x = 0.5) powder samples were prepared by the solid state reaction between La 2 O 3 and a mixture of ammonium chloride and bromide. The X-ray powder diffraction patterns were collected at room temperature between 5 and 125° in 2Θ using Cu K α 1 radiation (λ = 1.5406 A). The XPD data between 20 and 90° were analyzed with the DBWS-9006PC Rietveld profile refinement program. All the LaO(Cl 1− x Br x ) phases studied crystallize in the tetragonal PbFCl-type structure wi…

Valence (chemistry)BromineChemistryRietveld refinementMechanical EngineeringMetals and AlloysHalidechemistry.chemical_elementTetragonal crystal systemCrystallographyMechanics of MaterialsMaterials ChemistryLanthanumPowder diffractionSolid solutionJournal of Alloys and Compounds
researchProduct

NIR-absorbing transition metal complexes with redox-active ligands

2020

Bench top stable transition metal (M = Co, Ni, Cu) complexes with a non-innocent ortho-aminophenol derivative were synthesized by the reaction of metal(II)acetates with a ligand precursor in 2:1 ratio. The solid-state structures reveal the formation of neutral molecular complexes with square planar coordination geometries. The Co(II) and Cu(II) complexes are paramagnetic, whereas the Ni complex is a diamagnetic square planar low-spin Ni(II) complex. All complexes, and Ni(II) complex in particular, show strong absorption in the near-IR region. Peer reviewed

02 engineering and technologymetal complexesredox-active ligands010402 general chemistry01 natural sciencesInorganic ChemistryMetalParamagnetismchemistry.chemical_compoundTransition metalinfrapunasäteilyMaterials ChemistryPhysical and Theoretical Chemistrynear-IR absorptionChemistryLigandnon-innocent ligandsliganditkompleksiyhdisteet021001 nanoscience & nanotechnologyNon-innocent ligand0104 chemical sciences3. Good healthabsorptioCrystallographyvisual_artvisual_art.visual_art_mediumDiamagnetismAbsorption (chemistry)0210 nano-technologyDerivative (chemistry)
researchProduct

Stability of Rare-Earth Oxychloride Phases: Bond Valence Study

2002

Abstract The crystal structures of the tetragonal rare earth ( RE ) oxychlorides, RE OCl ( RE =La–Nd, Sm–Ho, and Y) were studied by X-ray powder diffraction measurements, Rietveld analyses, and bond valence calculations. The tetragonal structure (space group P 4/ nmm , No. 129, Z =2) is stable for all but Er–Lu oxychlorides, which possess a hexagonal structure. The tetragonal structure consists of alternating layers of ( RE O) n n + complex cations and X n − anions, where the rare earth is coordinated to four oxygens and four plus one chlorines in a monocapped tetragonal antiprism arrangement. The Rietveld analyses yielded a coherent series of structural parameters. Preferred orientation an…

Valence (chemistry)Ionic radiusRietveld refinementChemistryStereochemistryCrystal structureCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsInorganic ChemistryTetragonal crystal systemCrystallographyMolecular geometryCovalent bondMaterials ChemistryCeramics and CompositesPhysical and Theoretical ChemistryPowder diffractionJournal of Solid State Chemistry
researchProduct

CCDC 2002644: Experimental Crystal Structure Determination

2021

Related Article: Esko Saloj��rvi, Anssi Peuronen, Jani Moilanen, Hannu Huhtinen, Johan Lind��n, Akseli Mansikkam��ki, Mika Lastusaari, Ari Lehtonen|2021|Dalton Trans.|50|15831|doi:10.1039/D1DT01607E

Space GroupCrystallographybis{24-di-t-butyl-6-[(68-di-t-butyl-1H-phenoxazin-1-ylidene)amino]phenolato}-ironCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2002643: Experimental Crystal Structure Determination

2021

Related Article: Esko Saloj��rvi, Anssi Peuronen, Jani Moilanen, Hannu Huhtinen, Johan Lind��n, Akseli Mansikkam��ki, Mika Lastusaari, Ari Lehtonen|2021|Dalton Trans.|50|15831|doi:10.1039/D1DT01607E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters{6-[(35-di-t-butyl-2-hydroxyphenyl)imino]-1-[(35-di-tert-butyl-2-oxidophenyl)azanidyl]cyclohexa-24-dien-1-yl radical}-{24-di-t-butyl-6-[(6-{[35-di-t-butyl-2-(hydroxy)phenyl]amino}cyclohexa-24-dien-1-ylidene)amino]phenolato}-iron(iii)Experimental 3D Coordinates
researchProduct

CCDC 1986213: Experimental Crystal Structure Determination

2021

Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531

Space GroupCrystallographyCrystal SystemCrystal Structurebis{22'-[cyclohexa-35-diene-12-diylidenebis(azanylylidene)]bis(46-di-t-butylphenolato)}-titanium(iv) acetonitrile solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1986216: Experimental Crystal Structure Determination

2021

Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(24-di-t-butyl-6-[{6-[(35-di-t-butyl-2-hydroxyphenyl)imino]cyclohexa-24-dien-1-ylidene}amino]phenolato)-{1-[(35-di-t-butyl-2-oxidophenyl)azanidyl]-6-[(35-di-t-butyl-2-oxidophenyl)imino]cyclohexa-24-dien-1-yl radical}-vanadiumExperimental 3D Coordinates
researchProduct

CCDC 1986214: Experimental Crystal Structure Determination

2021

Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(24-di-t-butyl-6-[{6-[(35-di-t-butyl-2-hydroxyphenyl)imino]cyclohexa-24-dien-1-ylidene}amino]phenolato)-{1-[(35-di-t-butyl-2-oxidophenyl)azanidyl]-6-[(35-di-t-butyl-2-oxidophenyl)imino]cyclohexa-24-dien-1-yl radical}-vanadiumExperimental 3D Coordinates
researchProduct

CCDC 2062703: Experimental Crystal Structure Determination

2021

Related Article: Esko Saloj��rvi, Anssi Peuronen, Jani Moilanen, Hannu Huhtinen, Johan Lind��n, Akseli Mansikkam��ki, Mika Lastusaari, Ari Lehtonen|2021|Dalton Trans.|50|15831|doi:10.1039/D1DT01607E

Space GroupCrystallographybis{24-di-t-butyl-6-[(68-di-t-butyl-1H-phenoxazin-1-ylidene)amino]phenolato}-ironCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1986215: Experimental Crystal Structure Determination

2021

Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531

Space GroupCrystallographyCrystal SystemCrystal Structurebis{22'-[cyclohexa-35-diene-12-diylidenebis(azanylylidene)]bis(46-di-t-butylphenolato)}-nickelCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1913766: Experimental Crystal Structure Determination

2020

Related Article: Esko Salojärvi, Anssi Peuronen, Hannu Huhtinen, Leonid S. Vlasenko, Janne Halme, Pyry Mäkinen, Mika Lastusaari, Ari Lehtonen|2020|Inorg.Chem.Commun.|112|107711|doi:10.1016/j.inoche.2019.107711

Space GroupCrystallographyCrystal SystemCrystal Structurebis{24-di-t-butyl-6-[(4-nitrophenyl)imino]cyclohexa-24-dien-1-olato radical}-cobalt(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1913765: Experimental Crystal Structure Determination

2020

Related Article: Esko Salojärvi, Anssi Peuronen, Hannu Huhtinen, Leonid S. Vlasenko, Janne Halme, Pyry Mäkinen, Mika Lastusaari, Ari Lehtonen|2020|Inorg.Chem.Commun.|112|107711|doi:10.1016/j.inoche.2019.107711

Space GroupCrystallographyCrystal SystemCrystal Structurebis{24-di-t-butyl-6-[(4-nitrophenyl)amino]phenolato}-copper(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1987795: Experimental Crystal Structure Determination

2021

Related Article: Esko Saloj��rvi, Anssi Peuronen, Manu Lahtinen, Hannu Huhtinen, Leonid S. Vlasenko, Mika Lastusaari, Ari Lehtonen|2020|Molecules|25|2531|doi:10.3390/molecules25112531

Space GroupCrystallographybis{22'-[cyclohexa-35-diene-12-diylidenebis(azanylylidene)]bis(46-di-t-butylphenolato)}-zirconium(iv) unknown solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct