0000000001309202

AUTHOR

Agustín Camón

Insertion of a single-molecule magnet inside a ferromagnetic lattice based on a 3D bimetallic oxalate network: Towards molecular analogues of permanent magnets

The insertion of the single-molecule magnet (SMM) [MnIII(salen) (H2O)]2 2+ (salen2-=N,N-ethylenebis- (salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [MnIII(salen)(H2O)] 2[MnIICrIII(ox)3] 2×(CH3OH)×(CH3CN)2 (1). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [Mn III(salen)(H2O)]2[ZnIICr III(ox)3]2×(CH3OH) ×(CH3CN)2 (2) and [InIII(sal 2-trien)][MnIICrIII(ox)3] ×(H2O)0.25×(CH3OH) 0.25×(CH3CN)0.25 (3), which are used as reference compounds. In 2 it has been shown that the magnetic isolatio…

research product

Cover Picture: Insertion of a Single-Molecule Magnet inside a Ferromagnetic Lattice Based on a 3D Bimetallic Oxalate Network: Towards Molecular Analogues of Permanent Magnets (Chem. Eur. J. 6/2014)

research product

Single-molecule magnetic behavior in a neutral terbium(III) complex of a picolinate-based nitronyl nitroxide free radical

The terdentate anionic picolinate-based nitronyl nitroxide (picNN) free radical forms neutral and robust homoleptic complexes with rare earth-metal ions. The nonacoordinated Tb3+ complex Tb(picNN)3• 6H2O is a single-molecule magnet with an activation energy barrier Δ = 22.8 ± 0.5 K and preexponential factor τ0 = (5.5 ± 1.1) × 10-9 s. It shows magnetic hysteresis below 1 K. © 2011 American Chemical Society.

research product

Hybrid magnetic/superconducting materials obtained by insertion of a single-molecule magnet into TaS2 layers

et al.

research product

Two C3-symmetric Dy3 III complexes with triple di-μ-methoxo-μ-phenoxo bridges, magnetic ground state, and single-molecule magnetic behavior

Two series of isostructural C3-symmetric Ln3 complexes Ln3·[BPh4] and Ln3·0. 33[Ln(NO3)6] (in which LnIII=Gd and Dy) have been prepared from an amino-bis(phenol) ligand. X-ray studies reveal that LnIII ions are connected by one μ2-phenoxo and two μ3-methoxo bridges, thus leading to a hexagonal bipyramidal Ln3O5 bridging core in which LnIII ions exhibit a biaugmented trigonal-prismatic geometry. Magnetic susceptibility studies and ab initio complete active space self-consistent field (CASSCF) calculations indicate that the magnetic coupling between the DyIII ions, which possess a high axial anisotropy in the ground state, is very weakly antiferromagnetic and mainly dipolar in nature. To redu…

research product

Lanthanoid single-ion magnets based on polyoxometalates with a 5-fold symmetry: The series [LnP5W30O110]12– (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb)

A robust, stable and processable family of mononuclear lanthanoid complexes based on polyoxometalates (POMs) that exhibit single-molecule magnetic behavior is described here. Preyssler polyanions of general formula [LnP 5W 30O 110] 12- (Ln 3+ = Tb, Dy, Ho, Er, Tm, and Yb) have been characterized with static and dynamic magnetic measurements and heat capacity experiments. For the Dy and Ho derivatives, slow relaxation of the magnetization has been found. A simple interpretation of these properties is achieved by using crystal field theory. © 2012 American Chemical Society.

research product

ChemInform Abstract: Lanthanoid Single-Ion Magnets Based on Polyoxometalates with a 5-Fold Symmetry: The Series [LnP5W30O110]12-(Ln3+: Tb, Dy, Ho, Er, Tm, and Yb).

The compounds K12LnP5W30O110 ·nH2O (Ln3+: Tb, Dy, Ho, Er, Tm, and Yb) are prepared from aqueous solutions of K12.5Na1.5 [NaP5W30O110] and LnCl3 (autoclave, 160 °C, 24 h) and characterized by static and dynamic magnetic measurements.

research product

CCDC 969288: Experimental Crystal Structure Determination

Related Article: Mikko M. Hänninen, Antonio J. Mota, Daniel Aravena, Eliseo Ruiz, Reijo Sillanpää, Agustín Camón, Marco Evangelisti, Enrique Colacio|2014|Chem.-Eur.J.|20|8410|doi:10.1002/chem.201402392

research product

CCDC 969290: Experimental Crystal Structure Determination

Related Article: Mikko M. Hänninen, Antonio J. Mota, Daniel Aravena, Eliseo Ruiz, Reijo Sillanpää, Agustín Camón, Marco Evangelisti, Enrique Colacio|2014|Chem.-Eur.J.|20|8410|doi:10.1002/chem.201402392

research product

CCDC 969289: Experimental Crystal Structure Determination

Related Article: Mikko M. Hänninen, Antonio J. Mota, Daniel Aravena, Eliseo Ruiz, Reijo Sillanpää, Agustín Camón, Marco Evangelisti, Enrique Colacio|2014|Chem.-Eur.J.|20|8410|doi:10.1002/chem.201402392

research product

CCDC 969291: Experimental Crystal Structure Determination

Related Article: Mikko M. Hänninen, Antonio J. Mota, Daniel Aravena, Eliseo Ruiz, Reijo Sillanpää, Agustín Camón, Marco Evangelisti, Enrique Colacio|2014|Chem.-Eur.J.|20|8410|doi:10.1002/chem.201402392

research product

CCDC 940466: Experimental Crystal Structure Determination

Related Article: Miguel Clemente-León, Eugenio Coronado, Carlos J. Gómez-García, Maurici López-Jordà, Agustín Camón, Ana Repollés, Fernando Luis|2014|Chem.-Eur.J.|20|1669|doi:10.1002/chem.201303044

research product