0000000001309588

AUTHOR

Jason M. Hall-spencer

showing 31 related works from this author

Intertidal epilithic bacteria diversity changes along a naturally occurring carbon dioxide and pH gradient.

2014

Intertidal epilithic bacteria communities are important components of coastal ecosystems, yet few studies have assessed their diversity and how it may be affected by changing environmental parameters. Submarine CO2 seeps produce localised areas of CO2-enriched seawater with reduced pH levels. We utilised the seawater pH/CO2 gradient at Levante Bay (Italy) to test the hypothesis that epilithic bacteria communities are modified by exposure to seawater with the varying chemical parameters. Biofilms were sampled from three sites exposed to seawater with different pH/CO2 levels and diversity determined using high-throughput sequencing of 16S rRNA genes. Seawater pCO2 concentrations were increase…

CyanobacteriaIntertidal zoneBiologyCyanobacteriaApplied Microbiology and BiotechnologyMicrobiologybiofilmdiversityMarine ecosystemEcosystemSeawater14. Life underwaterEcosystemEcologyBacteriaEcologypHOcean acidificationBiodiversityCarbon DioxideHydrogen-Ion Concentrationbiology.organism_classificationepilithicBays13. Climate actionBiofilmsAlpha diversitySeawaterProteobacteriaFEMS microbiology ecology
researchProduct

Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans

2015

Excessive CO 2 in the present-day ocean-atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future, mirroring effects in many past mass extinctions. Fossil records demonstrate that organisms surviving such events were often smaller than those before, a phenomenon called the Lilliput effect. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO 2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to parti…

Extinction eventBIOMETRIENANISMEEcologyEcology (disciplines)COQUILLAGEINVERTEBRE AQUATIQUEBiologyEnvironmental Science (miscellaneous)CALCAIREDwarfingOceanographyCLIMATMETABOLISMECHANGEMENT CLIMATIQUEMILIEU MARINSeawaterGAZ CARBONIQUEsense organsADAPTATIONskin and connective tissue diseasesSocial Sciences (miscellaneous)ACIDIFICATION
researchProduct

Responses of marine benthic microalgae to elevated CO2

2011

Increasing anthropogenic CO emissions to the atmosphere are causing a rise in pCO concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO concentrations increased. CO enrichment caused significant increa…

0106 biological sciencesSettore BIO/07 - EcologiaChlorophyll aBiogeochemical cycleEcologybiologyPrimary producersEcology010604 marine biology & hydrobiologyAquatic Scienceocean acidification climate change co2 vent mediterraneanbiology.organism_classification010603 evolutionary biology01 natural sciencesColonisationchemistry.chemical_compoundDiatomchemistry13. Climate actionAbundance (ecology)Benthic zone14. Life underwaterPeriphytonEcology Evolution Behavior and SystematicsMARINE BIOLOGY
researchProduct

Effects of ocean acidification on the shells of four Mediterranean gastropod species near a CO2 seep

2017

Marine CO2seeps allow the study of the long-term effects of elevated pCO2(ocean acidification) on marine invertebrate biomineralization. We investigated the effects of ocean acidification on shell composition and structure in four ecologically important species of Mediterranean gastropods (two limpets, a top-shell snail, and a whelk). Individuals were sampled from three sites near a volcanic CO2seep off Vulcano Island, Italy. The three sites represented ambient (8.15 pH), moderate (8.03 pH) and low (7.73 pH) seawater mean pH. Shell mineralogy, microstructure, and mechanical strength were examined in all four species. We found that the calcite/aragonite ratio could vary and increased signifi…

Settore BIO/07 - Ecologia0106 biological sciences010504 meteorology & atmospheric sciencesMediterraneanAquatic Scienceengineering.materialOceanography01 natural scienceschemistry.chemical_compoundWhelkCO2 seepShellGastropodMineral0105 earth and related environmental sciencesCalcitebiologyOcean acidification010604 marine biology & hydrobiologyLimpetAragoniteOcean acidificationMarine invertebratesbiology.organism_classificationPollutionPetroleum seepOceanographychemistryengineeringSeawaterGeologyMarine Pollution Bulletin
researchProduct

Using natural analogues to investigate the effects of climate change and ocean acidification on Northern ecosystems

2018

AbstractNorthern oceans are in a state of rapid transition. Still, our knowledge of the likely effects of climate change and ocean acidification on key species in the food web, functionally important habitats and the structure of Arctic and sub-Arctic ecosystems is limited and based mainly on short-term laboratory studies on single species. This review discusses how tropical and temperate natural analogues of carbonate chemistry drivers, such as CO2 vents, have been used to further our knowledge of the sensitivity of biological systems to predicted climate change, and thus assess the capacity of different species to show long-term acclimation and adaptation to elevated levels of pCO2. Natur…

adaptation calcium carbonate saturation community observational studies pH polarSettore BIO/07 - Ecologia0106 biological sciences010504 meteorology & atmospheric sciencesEcologyEcology010604 marine biology & hydrobiologyOcean acidificationAquatic ScienceOceanography01 natural sciencesNatural (archaeology)Effects of global warmingEnvironmental scienceEcosystemAdaptationEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesICES Journal of Marine Science
researchProduct

Effects of reduced pH on shell integrity of a common whelk from a natural undersea CO2 vent community off Vulcano Island, Italy.

2014

Hexaplex trunculus is a widespread Mediterranean gastropod mollusc that plays a crucial role in benthic ecosystem dynamics. Individuals occur in shallow, sublittoral habitats near Vulcano Island, Italy, where an undersea CO2 vent provides a gradient of seawater acidification mimicing future predicted levels of ocean acidification. Individuals were collected from three sites with declining pH [ambient ( pH 8.18), medium (pH 8.05) and low (pH 7.49)]. Dissolution of shells was clearly evident at the medium (smoothing of outer shell ) and low (pitting and holes) pH sites. Scanning electron microcroscopy will provide a qualitative comparative assessment of micro-scale impacts of shell dissolutio…

ocean acidification gastropod CO2 seep Vulcano Island
researchProduct

Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification

2013

Abstract Shallow submarine gas vents in Levante Bay, Vulcano Island (Italy), emit around 3.6t CO2 per day providing a natural laboratory for the study of biogeochemical processes related to seabed CO2 leaks and ocean acidification. The main physico-chemical parameters (T, pH and Eh) were measured at more than 70 stations with 40 seawater samples were collected for chemical analyses. The main gas vent area had high concentrations of dissolved hydrothermal gases, low pH and negative redox values all of which returned to normal seawater values at distances of about 400 m from the main vents. Much of the bay around the vents is corrosive to calcium carbonate; the north shore has a gradient in s…

0106 biological sciencesSettore BIO/07 - EcologiaBiogeochemical cycle010504 meteorology & atmospheric sciencesCarbonatesAquatic ScienceOceanography01 natural sciencesCalcium CarbonateMarine geochemistrychemistry.chemical_compoundCarbon capture and storageSeawater14. Life underwaterSeabed0105 earth and related environmental sciences010604 marine biology & hydrobiologyCarbonate saturation stateOcean acidificationOcean acidificationCarbon DioxidePollutionSettore GEO/08 - Geochimica E VulcanologiaVolcanic ventsOceanographyCalcium carbonatechemistryBaysItaly13. Climate actionCarbon dioxideCarbonateSeawaterBayGeologyWater Pollutants ChemicalEnvironmental MonitoringMarine Pollution Bulletin
researchProduct

Ocean acidification can mediate biodiversity shifts by changing biogenic habitat

2016

The effects of ocean acidification (OA) on the structure and complexity of coastal marine biogenic habitat have been broadly overlooked. Here we explore how declining pH and carbonate saturation may affect the structural complexity of four major biogenic habitats. Our analyses predict that indirect effects driven by OA on habitat-forming organisms could lead to lower species diversity in coral reefs, mussel beds and some macroalgal habitats, but increases in seagrass and other macroalgal habitats. Available in situ data support the prediction of decreased biodiversity in coral reefs, but not the prediction of seagrass bed gains. Thus, OA-driven habitat loss may exacerbate the direct negativ…

Settore BIO/07 - Ecologia0106 biological sciencesgeographygeography.geographical_feature_category010504 meteorology & atmospheric sciencesbiologyEcology010604 marine biology & hydrobiologyfungiBiodiversityOcean acidificationCoral reefEnvironmental Science (miscellaneous)biology.organism_classification01 natural sciencesHabitat destructionSeagrassHabitatocean acidification biogenic habitat mussel bed macroalgae seagrass coral reefEnvironmental scienceEcosystemSpecies richnessSocial Sciences (miscellaneous)0105 earth and related environmental sciences
researchProduct

Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment

2017

Rising atmospheric CO2 concentrations are causing ocean acidification by reducing seawater pH and carbonate saturation levels. Laboratory studies have demonstrated that many larval and juvenile marine invertebrates are vulnerable to these changes in surface ocean chemistry, but challenges remain in predicting effects at community and ecosystem levels. We investigated the effect of ocean acidification on invertebrate recruitment at two coral reef CO2 seeps in Papua New Guinea. Invertebrate communities differed significantly between 'reference' (median pH7.97, 8.00), 'high CO2' (median pH7.77, 7.79), and 'extreme CO2' (median pH7.32, 7.68) conditions at each reef. There were also significant …

0106 biological sciencesMediterranean climategeographygeography.geographical_feature_category010504 meteorology & atmospheric sciencesEcology010604 marine biology & hydrobiologyfungiOcean acidificationMarine invertebratesCoral reefAquatic ScienceBiologyOceanography01 natural sciencesPollutionOceanographyEcosystemSeawaterReefgeographic locations0105 earth and related environmental sciencesInvertebrateMarine Pollution Bulletin
researchProduct

Ocean acidification bends the mermaid's wineglass

2015

Ocean acidification lowers the saturation state of calcium carbonate, decreasing net calcification and compromising the skeletons of organisms such as corals, molluscs and algae. These calcified structures can protect organisms from predation and improve access to light, nutrients and dispersive currents. While some species (such as urchins, corals and mussels) survive with decreased calcification, they can suffer from inferior mechanical performance. Here, we used cantilever beam theory to test the hypothesis that decreased calcification would impair the mechanical performance of the green alga Acetabularia acetabulum along a CO 2 gradient created by volcanic seeps off Vulcano, Italy. Cal…

Settore BIO/07 - EcologiaMechanical performanceVolcanic EruptionsCalcium CarbonateCalcificationchemistry.chemical_compoundCalcification PhysiologicNutrientAlgaeMediterranean SeamedicineSeawaterAbiotic componentbiologyEcologyfungiGlobal Change BiologyOcean acidificationCarbon Dioxidebiology.organism_classificationmedicine.diseaseSeaweedAgricultural and Biological Sciences (miscellaneous)AcetabulariaBiomechanical PhenomenaAcetabularia acetabulumCalcium carbonateItalychemistryStiffneGeneral Agricultural and Biological SciencesAcetabularia acetabulumCalcification
researchProduct

Metagenomics Reveals Planktonic Bacterial Community Shifts across a Natural CO2 Gradient in the Mediterranean Sea

2015

ABSTRACT Bacterial communities at a CO 2 vent (pH 6.7) were compared with those at control (pH 8.0) and transition sites (pH 7.6) using 16S rRNA metagenomics. Firmicutes and unclassified bacteria dominated across all sites, Proteobacteria , especially Gammaproteobacteria , declined, and Epsilonproteobacteria increased in the vent with an increase in Bacteroidetes at both the vent and transition sites.

EpsilonproteobacteriabiologyFirmicutesEcologyBacteroidetesPlanktonbiology.organism_classificationequipment and supplieshumanitiesMediterranean seafluids and secretionsMetagenomicsGammaproteobacteriaGeneticsbacteria14. Life underwaterProkaryotesProteobacteriaPLANCTONMolecular Biologygeographic locationsGenome Announcements
researchProduct

Decline in coccolithophore diversity and impact on coccolith morphogenesis along a natural CO2 gradient

2014

A natural pH gradient caused by marine CO2 seeps off Vulcano Island (Italy) was used to assess the effects of ocean acidification on coccolithophores, which are abundant planktonic unicellular calcifiers. Such seeps are used as natural laboratories to study the effects of ocean acidification on marine ecosystems, since they cause long-term changes in seawater carbonate chemistry and pH, exposing the organisms to elevated CO2 concentrations and therefore mimicking future scenarios. Previous work at CO2 seeps has focused exclusively on benthic organisms. Here we show progressive depletion of 27 coccolithophore species, in terms of cell concentrations and diversity, along a calcite saturation …

0106 biological sciencesAquatic Organisms010504 meteorology & atmospheric sciencesCoccolithophoreMediterranean01 natural sciencesCoccolithAlgaeMarine ecosystemcoccolithophore14. Life underwater0105 earth and related environmental sciencesEmiliania huxleyibiologyEcologyChemistry010604 marine biology & hydrobiologyOcean acidificationfungiHaptophytaOcean acidificationOcean acidification; coccolithophore; MediterraneanBiodiversityPlanktonCarbon Dioxidebiology.organism_classification13. Climate actionBenthic zoneGeneral Agricultural and Biological Sciences
researchProduct

Ocean Acidification and the Loss of Phenolic Substances in Marine Plants

2012

Rising atmospheric CO(2) often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO(2) availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO(2) enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO(2) …

0106 biological sciencesCymodocea nodosaved/biology.organism_classification_rank.speciesCarbonatesSecondary MetabolismMarine and Aquatic Scienceslcsh:MedicinePlant Science01 natural scienceschemistry.chemical_compoundGlobal Change Ecologylcsh:SciencePhysiological EcologyMultidisciplinaryAlismatalesbiologyEcologyEcologyPlant BiochemistryMarine EcologyOcean acidificationPotamogetonaceaeHydrogen-Ion ConcentrationSeagrassProductivity (ecology)ItalyCarbon dioxideCoastal EcologyResearch ArticleOceans and SeasMarine Biology010603 evolutionary biologyStatistics NonparametricHydrothermal VentsPhenolsPlant-Environment InteractionsTerrestrial plantSeawater14. Life underwaterocean acidification climate change mediterranean sea seagrassBiologyAnalysis of VarianceChemical EcologyMarylandved/biology010604 marine biology & hydrobiologyPlant Ecologyfungilcsh:R15. Life on landCarbon Dioxidebiology.organism_classificationSalinitychemistry13. Climate actionEarth Scienceslcsh:QRuppia maritima
researchProduct

Volcanic CO2 seep geochemistry and use in understanding ocean acidification

2020

AbstractOcean acidification is one of the most dramatic effects of the massive atmospheric release of anthropogenic carbon dioxide (CO2) that has occurred since the Industrial Revolution, although its effects on marine ecosystems are not well understood. Submarine volcanic hydrothermal fields have geochemical conditions that provide opportunities to characterise the effects of elevated levels of seawater CO2 on marine life in the field. Here, we review the geochemical aspects of shallow marine CO2-rich seeps worldwide, focusing on both gas composition and water chemistry. We then describe the geochemical effects of volcanic CO2 seepage on the overlying seawater column. We also present new g…

0106 biological sciencesSettore BIO/07 - Ecologia010504 meteorology & atmospheric sciencesGeochemistryMarine life01 natural scienceschemistry.chemical_compoundAlgaeEnvironmental ChemistrySubmarine hydrothermalismMarine ecosystem0105 earth and related environmental sciencesEarth-Surface ProcessesWater Science and TechnologyCalcifying speciesCarbon dioxide in Earth's atmospherebiology010604 marine biology & hydrobiologyNatural analoguesCoralline algaeOcean acidificationbiology.organism_classificationEcosystem effectsSettore GEO/08 - Geochimica E VulcanologiachemistryCarbon dioxideEnvironmental scienceSeawater
researchProduct

Macroalgal responses to ocean acidification depend on nutrient and light levels

2015

Ocean acidification may benefit algae that are able to capitalize on increased carbon availability for photosynthesis, but it is expected to have adverse effects on calcified algae through dissolution. Shifts in dominance between primary producers will have knock-on effects on marine ecosystems and will likely vary regionally, depending on factors such as irradiance (light vs. shade) and nutrient levels (oligotrophic vs. eutrophic). Thus experiments are needed to evaluate interactive effects of combined stressors in the field. In this study, we investigated the physiological responses of macroalgae near a CO2 seep in oligotrophic waters off Vulcano (Italy). The algae were incubated in situ …

macroalgaelcsh:QH1-199.5Padina pavonicaocean acidificationOcean Engineeringphenolic compoundslcsh:General. Including nature conservation geographical distributionAquatic SciencePhotosynthetic efficiencyOceanographyPhotosynthesisNutrientAlgaeBotanyMarine Sciencelcsh:ScienceWater Science and TechnologyGlobal and Planetary ChangephotosynthesisbiologyDictyotalesbiology.organism_classificationphotophysiologyEnvironmental chemistrylcsh:Qnutrient availabilityFucalesEutrophicationFrontiers in Marine Science
researchProduct

Trace elements in shells of common gastropods in the near vicinity of a natural CO<sub>2</sub> vent: no evidence of pH-de…

2014

Abstract. There is concern that the use of natural volcanic CO2 vents as analogs for studies of the impacts of ocean acidification on marine organisms are biased due to physiochemical influences other than seawater pH alone. One issue that has been raised is whether potentially harmful trace elements in sediments that are rendered more soluble and labile in low pH environments are made more bioavailable, and sequestered in the local flora and fauna at harmful levels. In order to evaluate this hypothesis, we analyzed the concentrations of trace elements in shells (an established proxy for tissues) of four species of gastropods (two limpets, a topshell and a whelk) collected from three sites …

OceanographyWhelkbiologyPatella caeruleaTrace elementHexaplex trunculusOcean acidificationSeawaterbiology.organism_classificationCaeruleaBay
researchProduct

Ocean acidification impairs vermetid reef recruitment

2014

Vermetids form reefs in sub-tropical and warm-temperate waters that protect coasts from erosion, regulate sediment transport and accumulation, serve as carbon sinks and provide habitat for other species. The gastropods that form these reefs brood encapsulated larvae; they are threatened by rapid environmental changes since their ability to disperse is very limited. We used transplant experiments along a natural CO2 gradient to assess ocean acidification effects on the reef-building gastropod Dendropoma petraeum. We found that although D. petraeum were able to reproduce and brood at elevated levels of CO2, recruitment success was adversely affected. Long-term exposure to acidified conditions…

0106 biological sciencesDendropoma petraeumGeologic Sediments010504 meteorology & atmospheric sciencesOceans and SeasGastropoda01 natural sciencesArticleCLIMATE-CHANGE ECOLOGYWater MovementsAnimals14. Life underwaterReefMollusca0105 earth and related environmental sciencesgeographyMultidisciplinarygeography.geographical_feature_categorybiologyEcologyCoral Reefs010604 marine biology & hydrobiologyfungiECOSYSTEM ECOLOGYWaterOcean acidificationCoral reefCarbon DioxideHydrogen-Ion Concentrationbiology.organism_classificationBroodFisheryHabitatEnvironmental scienceECOSYSTEM ECOLOGY; CLIMATE-CHANGE ECOLOGYEnvironmental issues with coral reefsgeographic locationsScientific Reports
researchProduct

Major loss of coralline algal diversity in response to ocean acidification

2021

[Abstract] Calcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary h…

macroalgae0106 biological sciencesecosystem engineersOceans and SeasBiodiversityadaptation010603 evolutionary biology01 natural sciencesEcosystem engineerEvolutionary historyMacroalgaeAlgaeClimate changeEnvironmental ChemistrySeawaterPhotic zoneEcosystem14. Life underwaterAdaptation[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/OceanographyEcosystembiodiversityGeneral Environmental ScienceGlobal and Planetary ChangeEcologybiologyEcology010604 marine biology & hydrobiologyOcean chemistryfungiCoralline algaeOcean acidificationBiodiversitySeaweedsHydrogen-Ion Concentration15. Life on landbiology.organism_classificationpsbAseaweedsclimate change13. Climate actionRhodophytaEcosystem engineers[SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/Bioclimatology[SDE.BE]Environmental Sciences/Biodiversity and Ecologyevolutionary historyGlobal Change Biology
researchProduct

Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient

2014

Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carbonate making seawater less corrosive. Here, we used a natural gradient in calcium carbonate saturation, caused by shallow-water CO2 seeps in the Mediterranean Sea, to assess whether seaweed that is resistant to acidification (Padina pavonica) could prevent adverse effects of acidification on epiphytic…

0106 biological sciencesSettore BIO/07 - Ecologia010504 meteorology & atmospheric sciencesPadina pavonica01 natural sciencesForaminiferaBlue carbonchemistry.chemical_compoundEcosystem14. Life underwaterEcology Evolution Behavior and SystematicsOriginal Research0105 earth and related environmental sciencesNature and Landscape ConservationBlue carbonbiologyEcologyEcologyShallow-water CO<inf>2</inf> seep010604 marine biology & hydrobiologyOcean acidificationBenthic foraminiferaCoastal communitieshallow-water CO2 seepsOcean acidification15. Life on landbiology.organism_classificationcoastal communitiesEcology Evolution Behavior and SystematicSeagrassCalcium carbonatechemistry13. Climate actionCalcareous
researchProduct

Simplification, not “tropicalization”, of temperate marine ecosystems under ocean warming and acidification

2021

Ocean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral-dominated systems…

Aquatic Organismsnatural analoguesEffects of global warming on oceanskelp forestswarm-temperateAnimalsEnvironmental ChemistrySeawaterMarine ecosystemEcosystembiogeographyEcosystemGeneral Environmental ScienceGlobal and Planetary Changegeographygeography.geographical_feature_categoryEcologyCoral ReefsEcologyfungitechnology industry and agricultureMarine habitatsOcean acidificationCoral reefHydrogen-Ion Concentrationbiochemical phenomena metabolism and nutritionrange shiftKelp forestclimate changeHabitat destructionEnvironmental sciencescleractinian coralsgeographic locationsGlobal Change Biology
researchProduct

Calcification is not the Achilles' heel of cold-water corals in an acidifying ocean

2015

Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold-water corals are even more vulnerable as they live in areas where aragonite saturation (?ara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold-water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO2 1058 ?atm, ?ara 1.29), and nor a…

CnidariaSettore BIO/07 - EcologiaCaryophyllia smithiiCoralcold-water coralsocean acidificationengineering.materialCaryophyllia smithiiDendrophyllia cornigeraCold-water coralcalcification and dissolutionCalcification PhysiologicAnthozoaTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONMediterranean SeaAnimalsEnvironmental ChemistrySeawaterGlobal ChangeReefDesmophyllum dianthuGeneral Environmental ScienceGlobal and Planetary ChangegeographyDesmophyllum dianthusgeography.geographical_feature_categorybiologyEcology2300EcologyAragoniteOcean acidificationfungiCalcification and dissolutionOcean acidificationCoral reefbiochemical phenomena metabolism and nutritionCarbon DioxideHydrogen-Ion Concentrationbiology.organism_classificationAnthozoaOceanographyengineeringCold-water coralsgeographic locationsMathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

Changes in fish communities due to benthic habitat shifts under ocean acidification conditions

2020

Ocean acidification will likely change the structure and function of coastal marine ecosystems over coming decades. Volcanic carbon dioxide seeps generate dissolved CO2 and pH gradients that provide realistic insights into the direction and magnitude of these changes. Here, we used fish and benthic community surveys to assess the spatio-temporal dynamics of fish community properties off CO2 seeps in Japan. Adding to previous evidence from ocean acidification ecosystem studies conducted elsewhere, our findings documented shifts from calcified to non-calcified habitats with reduced benthic complexity. In addition, we found that such habitat transition led to decreased diversity of associated …

Environmental Engineering010504 meteorology & atmospheric sciencesRange (biology)CoralReef-associated fish010501 environmental sciences01 natural sciencesJapanEnvironmental ChemistryAnimalsEcosystemMarine ecosystemSeawaterScleractinian coral coverBiogenic habitat complexity Carbon dioxide Reef-associated fish Scleractinian coral coverWaste Management and DisposalBiogenic habitat complexityEcosystem0105 earth and related environmental sciencesEcologyCoral ReefsfungiGlobal warmingOcean acidificationHydrogen-Ion ConcentrationPollutionHabitatCarbon dioxideBenthic zoneEnvironmental sciencegeographic locations
researchProduct

The impact of ocean acidification and warming on the skeletal mechanical properties of the sea urchin Paracentrotus lividus from laboratory and field…

2015

AbstractIncreased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechin…

0106 biological sciencesSea urchinIntertidal zone010501 environmental sciencesTest (biology)Aquatic ScienceOceanography01 natural sciencesParacentrotus lividuschemistry.chemical_compoundbiology.animalAquatic scienceCO2 seepSea urchinEcology Evolution Behavior and SystematicsSkeleton0105 earth and related environmental sciencesbiologyEcology010604 marine biology & hydrobiologyLong-term exposureOcean acidificationOcean acidificationOcean acidification sea urchin Paracentrotus lividus mechanical properties nanoindentation skeleton CO2 vent intertidal pools long-term exposurebiology.organism_classificationEcology Evolution Behavior and SystematicOceanographychemistryCarbonateSeawaterIntertidal poolMechanical propertieParacentrotus lividu
researchProduct

Ocean acidification at a coastal CO2 vent induces expression of stress-related transcripts and transposable elements in the sea anemone Anemonia viri…

2019

Notice of republication An incomplete, earlier version of this article was published in error. The publisher apologizes for the error. This article was republished on May 21, 2019 to correct for this error. Please download the article again to view the correct version. The originally published, uncorrected article and the republished, corrected article are provided here for reference. Supporting information S1 File. Originally published, uncorrected article. (PDF) S2 File. Republished, corrected article. (PDF)1 Ocean acidification threatens to disrupt interactions between organisms throughout marine ecosystems. The diversity of reef-building organisms decreases as seawater CO2 increases alo…

Transposable elementMultidisciplinarybiologySciencelcsh:RQRlcsh:MedicineCorrectionOcean acidificationocean acidificationSea anemonebiology.organism_classificationAnemoniaanemoneBotanyMedicinelcsh:Qlcsh:SciencePLoS ONE
researchProduct

Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.

2014

The effects of increasing atmospheric CO2 on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO2 gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 mu atm, minimum Omega(arag) 3.77), moderately CO2-enriched (median pCO(2) 592 mu atm, minimum Omega(arag) 2.96), and highly CO2-enriched (median pCO(2) 1611 mu at…

Biogeochemical cycleGeologic SedimentsFORAMINIFERAMolecular Sequence DataSoil SciencePolymerase Chain ReactionPH GRADIENTForaminiferaCARBONMediterranean seaRNA Ribosomal 16SMediterranean SeaEcosystemSeawater14. Life underwaterMICROBIAL COMMUNITIESRelative species abundanceEcology Evolution Behavior and SystematicsEcologybiologyBacteriaEcologyOCEAN ACIDIFICATIONSedimentOcean acidificationBiodiversitySequence Analysis DNACORALCarbon DioxideHydrogen-Ion Concentrationbiology.organism_classificationSP NOV.Italy13. Climate actionGenes BacterialECOSYSTEMSeawaterGEN. NOV.TIDAL FLAT SEDIMENTMicrobial ecology
researchProduct

Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communiti…

2017

Ocean acidification may have far-reaching consequences for marine community and ecosystem dynamics, but its full impacts remain poorly understood due to the difficulty of manipulating pCO2 at the ecosystem level to mimic realistic fluctuations that occur on a number of different timescales. It is especially unclear how quickly communities at various stages of development respond to intermediate-scale pCO2 change and, if high pCO2 is relieved mid-succession, whether past acidification effects persist, are reversed by alleviation of pCO2 stress, or are worsened by departures from prior high pCO2 conditions to which organisms had acclimatized. Here, we used reciprocal transplant experiments al…

marine biodiversitySettore BIO/07 - Ecologia0106 biological sciencesFood Chain010504 meteorology & atmospheric sciencesBiofoulingEcological successionBiology01 natural sciencesEnvironmental ChemistryAnimalsEcosystemSeawater14. Life underwaterUrochordataEcosystem0105 earth and related environmental sciencesGeneral Environmental Sciencenatural analogueGlobal and Planetary ChangeFouling community2300EcologyEcologyOcean acidification010604 marine biology & hydrobiologyCommunity structureOcean acidificationInterspecific competition15. Life on landCarbon DioxideHydrogen-Ion ConcentrationFood webclimate change13. Climate actionBenthic zonecommunityAcidsGlobal change biology
researchProduct

Temporal fluctuations in seawater pCO2 may be as important as mean differences when determining physiological sensitivity in natural systems

2015

AbstractMost studies assessing the impacts of ocean acidification (OA) on benthic marine invertebrates have used stable mean pH/pCO2 levels to highlight variation in the physiological sensitivities in a range of taxa. However, many marine environments experience natural fluctuations in carbonate chemistry, and to date little attempt has been made to understand the effect of naturally fluctuating seawater pCO2 (pCO2sw) on the physiological capacity of organisms to maintain acid–base homeostasis. Here, for the first time, we exposed two species of sea urchin with different acid–base tolerances, Paracentrotus lividus and Arbacia lixula, to naturally fluctuating pCO2sw conditions at shallow wat…

0106 biological sciencesSea urchin010504 meteorology & atmospheric sciencesAcid-base balanceEcologyChemistry010604 marine biology & hydrobiologyOcean acidificationVolcanic ventOcean acidificationAquatic ScienceAtmospheric sciencesOceanography01 natural sciencesEcology Evolution Behavior and SystematicpCO2Natural (archaeology)OceanographyAquatic scienceSeawaterNatural variabilitySensitivity (control systems)Natural variabilityEcology Evolution Behavior and Systematics0105 earth and related environmental sciences
researchProduct

Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical?temperate transition zone

2018

AbstractRising atmospheric concentrations of carbon dioxide are causing surface seawater pH and carbonate ion concentrations to fall in a process known as ocean acidification. To assess the likely ecological effects of ocean acidification we compared intertidal and subtidal marine communities at increasing levels of pCO2 at recently discovered volcanic seeps off the Pacific coast of Japan (34° N). This study region is of particular interest for ocean acidification research as it has naturally low levels of surface seawater pCO2 (280–320 µatm) and is located at a transition zone between temperate and sub-tropical communities. We provide the first assessment of ocean acidification effects at …

0106 biological sciencesMultidisciplinary010504 meteorology & atmospheric sciences010604 marine biology & hydrobiologyAragonitelcsh:RBiodiversitylcsh:MedicineIntertidal zoneOcean acidificationengineering.material01 natural sciencesArticlechemistry.chemical_compoundOceanographychemistryHabitatCarbon dioxideengineeringEnvironmental sciencelcsh:QSeawaterEcosystemlcsh:Science0105 earth and related environmental sciencesScientific Reports
researchProduct

Individual and population-level responses to ocean acidification

2016

- Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the …

MaleAquatic OrganismsMultidisciplinaryOceans and SeasPopulation DynamicsAnimalsFemaleModels BiologicalArticleScientific Reports
researchProduct

Ocean acidification at a coastal CO2 vent induces expression of stress-related transcripts and transposable elements in the sea anemone Anemonia viri…

2019

Published version, available at: https://doi.org/10.1371/journal.pone.0210358 Ocean acidification threatens to disrupt interactions between organisms throughout marine ecosystems. The diversity of reef-building organisms decreases as seawater CO2 increases along natural gradients, yet soft-bodied animals, such as sea anemones, are often resilient. We sequenced the polyA-enriched transcriptome of adult sea anemone Anemonia viridis and its dinoflagellate symbiont sampled along a natural CO2 gradient in Italy to assess stress levels in these organisms. We found that about 1.4% of the anemone transcripts, but only ~0.5% of the Symbiodinium sp. transcripts were differentially expressed. Processe…

0106 biological sciences0301 basic medicineAtmospheric ScienceMolecular biologyMarine and Aquatic SciencesGene ExpressionRetrotransposonSea anemone01 natural sciencesAnemoniaSequencing techniquesMobile Genetic ElementsMultidisciplinarybiologyQREukaryotaOcean acidificationAnemoneRNA sequencingGenomicsChemistryRetrotransposonsPhysical SciencesMedicineTranscriptome AnalysisResearch ArticleScienceZoology010603 evolutionary biology03 medical and health sciencesGreenhouse GasesCnidariaGenetic ElementsSea WaterGeneticsVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470Environmental ChemistryAnimalsMarine ecosystemBiology and life sciencesEcology and Environmental SciencesDinoflagellateChemical CompoundsOrganismsTransposable ElementsCorrectionAquatic EnvironmentsComputational BiologyCarbon Dioxidebiology.organism_classificationGenome AnalysisMarine EnvironmentsInvertebratesVDP::Mathematics and natural science: 400::Basic biosciences: 470Research and analysis methods:Genetikk og genomikk: 474 VDP::Marinbiologi:497 VDP::Økologi:488 [VDP]030104 developmental biologySea AnemonesMolecular biology techniquesAtmospheric ChemistryEarth SciencesSeawater
researchProduct

Data from: Ocean acidification affects fish spawning but not paternity at CO2 seeps

2016

Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification expected to occur owing to anthropogenic carbon dioxide emissions during this century. We provide the first evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by dominant nesting males. Key mating behaviours such as dominant male courtship and nest defence did not differ between sites with ambient versus elevated CO2 concentrations. Dominant males did, however, experience significantly lower rates of pair spawning at elevated CO2 levels. Despite the higher r…

CO2 ventmedicine and health careSymphodus ocellatusAlternative Reproductive TacticsLife SciencesMedicinelabrid
researchProduct