6533b823fe1ef96bd127e0fd
RESEARCH PRODUCT
Decline in coccolithophore diversity and impact on coccolith morphogenesis along a natural CO2 gradient
Marcello PassaroMarco MilazzoPatrizia ZiveriRiccardo Rodolfo-metalpaJason M. Hall-spencerAlessandro Incarbonasubject
0106 biological sciencesAquatic Organisms010504 meteorology & atmospheric sciencesCoccolithophoreMediterranean01 natural sciencesCoccolithAlgaeMarine ecosystemcoccolithophore14. Life underwater0105 earth and related environmental sciencesEmiliania huxleyibiologyEcologyChemistry010604 marine biology & hydrobiologyOcean acidificationfungiHaptophytaOcean acidificationOcean acidification; coccolithophore; MediterraneanBiodiversityPlanktonCarbon Dioxidebiology.organism_classification13. Climate actionBenthic zoneGeneral Agricultural and Biological Sciencesdescription
A natural pH gradient caused by marine CO2 seeps off Vulcano Island (Italy) was used to assess the effects of ocean acidification on coccolithophores, which are abundant planktonic unicellular calcifiers. Such seeps are used as natural laboratories to study the effects of ocean acidification on marine ecosystems, since they cause long-term changes in seawater carbonate chemistry and pH, exposing the organisms to elevated CO2 concentrations and therefore mimicking future scenarios. Previous work at CO2 seeps has focused exclusively on benthic organisms. Here we show progressive depletion of 27 coccolithophore species, in terms of cell concentrations and diversity, along a calcite saturation gradient from Omega(calcite) 6.4 to <1. Water collected close to the main CO2 seeps had the highest concentrations of malformed Emiliania huxleyi. These observations add to a growing body of evidence that ocean acidification may benefit some algae but will likely cause marine biodiversity loss, especially by impacting calcifying species, which are affected as carbonate saturation falls.
year | journal | country | edition | language |
---|---|---|---|---|
2014-01-01 |