0000000000063935

AUTHOR

Jason M. Hall-spencer

0000-0002-6915-2518

Intertidal epilithic bacteria diversity changes along a naturally occurring carbon dioxide and pH gradient.

Intertidal epilithic bacteria communities are important components of coastal ecosystems, yet few studies have assessed their diversity and how it may be affected by changing environmental parameters. Submarine CO2 seeps produce localised areas of CO2-enriched seawater with reduced pH levels. We utilised the seawater pH/CO2 gradient at Levante Bay (Italy) to test the hypothesis that epilithic bacteria communities are modified by exposure to seawater with the varying chemical parameters. Biofilms were sampled from three sites exposed to seawater with different pH/CO2 levels and diversity determined using high-throughput sequencing of 16S rRNA genes. Seawater pCO2 concentrations were increase…

research product

Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans

Excessive CO 2 in the present-day ocean-atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future, mirroring effects in many past mass extinctions. Fossil records demonstrate that organisms surviving such events were often smaller than those before, a phenomenon called the Lilliput effect. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO 2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to parti…

research product

Responses of marine benthic microalgae to elevated CO2

Increasing anthropogenic CO emissions to the atmosphere are causing a rise in pCO concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO concentrations increased. CO enrichment caused significant increa…

research product

Effects of ocean acidification on the shells of four Mediterranean gastropod species near a CO2 seep

Marine CO2seeps allow the study of the long-term effects of elevated pCO2(ocean acidification) on marine invertebrate biomineralization. We investigated the effects of ocean acidification on shell composition and structure in four ecologically important species of Mediterranean gastropods (two limpets, a top-shell snail, and a whelk). Individuals were sampled from three sites near a volcanic CO2seep off Vulcano Island, Italy. The three sites represented ambient (8.15 pH), moderate (8.03 pH) and low (7.73 pH) seawater mean pH. Shell mineralogy, microstructure, and mechanical strength were examined in all four species. We found that the calcite/aragonite ratio could vary and increased signifi…

research product

Using natural analogues to investigate the effects of climate change and ocean acidification on Northern ecosystems

AbstractNorthern oceans are in a state of rapid transition. Still, our knowledge of the likely effects of climate change and ocean acidification on key species in the food web, functionally important habitats and the structure of Arctic and sub-Arctic ecosystems is limited and based mainly on short-term laboratory studies on single species. This review discusses how tropical and temperate natural analogues of carbonate chemistry drivers, such as CO2 vents, have been used to further our knowledge of the sensitivity of biological systems to predicted climate change, and thus assess the capacity of different species to show long-term acclimation and adaptation to elevated levels of pCO2. Natur…

research product

Effects of reduced pH on shell integrity of a common whelk from a natural undersea CO2 vent community off Vulcano Island, Italy.

Hexaplex trunculus is a widespread Mediterranean gastropod mollusc that plays a crucial role in benthic ecosystem dynamics. Individuals occur in shallow, sublittoral habitats near Vulcano Island, Italy, where an undersea CO2 vent provides a gradient of seawater acidification mimicing future predicted levels of ocean acidification. Individuals were collected from three sites with declining pH [ambient ( pH 8.18), medium (pH 8.05) and low (pH 7.49)]. Dissolution of shells was clearly evident at the medium (smoothing of outer shell ) and low (pitting and holes) pH sites. Scanning electron microcroscopy will provide a qualitative comparative assessment of micro-scale impacts of shell dissolutio…

research product

Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification

Abstract Shallow submarine gas vents in Levante Bay, Vulcano Island (Italy), emit around 3.6t CO2 per day providing a natural laboratory for the study of biogeochemical processes related to seabed CO2 leaks and ocean acidification. The main physico-chemical parameters (T, pH and Eh) were measured at more than 70 stations with 40 seawater samples were collected for chemical analyses. The main gas vent area had high concentrations of dissolved hydrothermal gases, low pH and negative redox values all of which returned to normal seawater values at distances of about 400 m from the main vents. Much of the bay around the vents is corrosive to calcium carbonate; the north shore has a gradient in s…

research product

Ocean acidification can mediate biodiversity shifts by changing biogenic habitat

The effects of ocean acidification (OA) on the structure and complexity of coastal marine biogenic habitat have been broadly overlooked. Here we explore how declining pH and carbonate saturation may affect the structural complexity of four major biogenic habitats. Our analyses predict that indirect effects driven by OA on habitat-forming organisms could lead to lower species diversity in coral reefs, mussel beds and some macroalgal habitats, but increases in seagrass and other macroalgal habitats. Available in situ data support the prediction of decreased biodiversity in coral reefs, but not the prediction of seagrass bed gains. Thus, OA-driven habitat loss may exacerbate the direct negativ…

research product

Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment

Rising atmospheric CO2 concentrations are causing ocean acidification by reducing seawater pH and carbonate saturation levels. Laboratory studies have demonstrated that many larval and juvenile marine invertebrates are vulnerable to these changes in surface ocean chemistry, but challenges remain in predicting effects at community and ecosystem levels. We investigated the effect of ocean acidification on invertebrate recruitment at two coral reef CO2 seeps in Papua New Guinea. Invertebrate communities differed significantly between 'reference' (median pH7.97, 8.00), 'high CO2' (median pH7.77, 7.79), and 'extreme CO2' (median pH7.32, 7.68) conditions at each reef. There were also significant …

research product

Ocean acidification bends the mermaid's wineglass

Ocean acidification lowers the saturation state of calcium carbonate, decreasing net calcification and compromising the skeletons of organisms such as corals, molluscs and algae. These calcified structures can protect organisms from predation and improve access to light, nutrients and dispersive currents. While some species (such as urchins, corals and mussels) survive with decreased calcification, they can suffer from inferior mechanical performance. Here, we used cantilever beam theory to test the hypothesis that decreased calcification would impair the mechanical performance of the green alga Acetabularia acetabulum along a CO 2 gradient created by volcanic seeps off Vulcano, Italy. Cal…

research product

Metagenomics Reveals Planktonic Bacterial Community Shifts across a Natural CO2 Gradient in the Mediterranean Sea

ABSTRACT Bacterial communities at a CO 2 vent (pH 6.7) were compared with those at control (pH 8.0) and transition sites (pH 7.6) using 16S rRNA metagenomics. Firmicutes and unclassified bacteria dominated across all sites, Proteobacteria , especially Gammaproteobacteria , declined, and Epsilonproteobacteria increased in the vent with an increase in Bacteroidetes at both the vent and transition sites.

research product

Decline in coccolithophore diversity and impact on coccolith morphogenesis along a natural CO2 gradient

A natural pH gradient caused by marine CO2 seeps off Vulcano Island (Italy) was used to assess the effects of ocean acidification on coccolithophores, which are abundant planktonic unicellular calcifiers. Such seeps are used as natural laboratories to study the effects of ocean acidification on marine ecosystems, since they cause long-term changes in seawater carbonate chemistry and pH, exposing the organisms to elevated CO2 concentrations and therefore mimicking future scenarios. Previous work at CO2 seeps has focused exclusively on benthic organisms. Here we show progressive depletion of 27 coccolithophore species, in terms of cell concentrations and diversity, along a calcite saturation …

research product

Ocean Acidification and the Loss of Phenolic Substances in Marine Plants

Rising atmospheric CO(2) often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO(2) availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO(2) enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO(2) …

research product

Volcanic CO2 seep geochemistry and use in understanding ocean acidification

AbstractOcean acidification is one of the most dramatic effects of the massive atmospheric release of anthropogenic carbon dioxide (CO2) that has occurred since the Industrial Revolution, although its effects on marine ecosystems are not well understood. Submarine volcanic hydrothermal fields have geochemical conditions that provide opportunities to characterise the effects of elevated levels of seawater CO2 on marine life in the field. Here, we review the geochemical aspects of shallow marine CO2-rich seeps worldwide, focusing on both gas composition and water chemistry. We then describe the geochemical effects of volcanic CO2 seepage on the overlying seawater column. We also present new g…

research product

Macroalgal responses to ocean acidification depend on nutrient and light levels

Ocean acidification may benefit algae that are able to capitalize on increased carbon availability for photosynthesis, but it is expected to have adverse effects on calcified algae through dissolution. Shifts in dominance between primary producers will have knock-on effects on marine ecosystems and will likely vary regionally, depending on factors such as irradiance (light vs. shade) and nutrient levels (oligotrophic vs. eutrophic). Thus experiments are needed to evaluate interactive effects of combined stressors in the field. In this study, we investigated the physiological responses of macroalgae near a CO2 seep in oligotrophic waters off Vulcano (Italy). The algae were incubated in situ …

research product

Trace elements in shells of common gastropods in the near vicinity of a natural CO<sub>2</sub> vent: no evidence of pH-dependent contamination

Abstract. There is concern that the use of natural volcanic CO2 vents as analogs for studies of the impacts of ocean acidification on marine organisms are biased due to physiochemical influences other than seawater pH alone. One issue that has been raised is whether potentially harmful trace elements in sediments that are rendered more soluble and labile in low pH environments are made more bioavailable, and sequestered in the local flora and fauna at harmful levels. In order to evaluate this hypothesis, we analyzed the concentrations of trace elements in shells (an established proxy for tissues) of four species of gastropods (two limpets, a topshell and a whelk) collected from three sites …

research product

Ocean acidification impairs vermetid reef recruitment

Vermetids form reefs in sub-tropical and warm-temperate waters that protect coasts from erosion, regulate sediment transport and accumulation, serve as carbon sinks and provide habitat for other species. The gastropods that form these reefs brood encapsulated larvae; they are threatened by rapid environmental changes since their ability to disperse is very limited. We used transplant experiments along a natural CO2 gradient to assess ocean acidification effects on the reef-building gastropod Dendropoma petraeum. We found that although D. petraeum were able to reproduce and brood at elevated levels of CO2, recruitment success was adversely affected. Long-term exposure to acidified conditions…

research product

Major loss of coralline algal diversity in response to ocean acidification

[Abstract] Calcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary h…

research product

Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient

Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carbonate making seawater less corrosive. Here, we used a natural gradient in calcium carbonate saturation, caused by shallow-water CO2 seeps in the Mediterranean Sea, to assess whether seaweed that is resistant to acidification (Padina pavonica) could prevent adverse effects of acidification on epiphytic…

research product

Simplification, not “tropicalization”, of temperate marine ecosystems under ocean warming and acidification

Ocean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed “tropicalization”. A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral-dominated systems…

research product

Calcification is not the Achilles' heel of cold-water corals in an acidifying ocean

Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold-water corals are even more vulnerable as they live in areas where aragonite saturation (?ara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold-water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO2 1058 ?atm, ?ara 1.29), and nor a…

research product

Changes in fish communities due to benthic habitat shifts under ocean acidification conditions

Ocean acidification will likely change the structure and function of coastal marine ecosystems over coming decades. Volcanic carbon dioxide seeps generate dissolved CO2 and pH gradients that provide realistic insights into the direction and magnitude of these changes. Here, we used fish and benthic community surveys to assess the spatio-temporal dynamics of fish community properties off CO2 seeps in Japan. Adding to previous evidence from ocean acidification ecosystem studies conducted elsewhere, our findings documented shifts from calcified to non-calcified habitats with reduced benthic complexity. In addition, we found that such habitat transition led to decreased diversity of associated …

research product

The impact of ocean acidification and warming on the skeletal mechanical properties of the sea urchin Paracentrotus lividus from laboratory and field observations

AbstractIncreased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechin…

research product

Ocean acidification at a coastal CO2 vent induces expression of stress-related transcripts and transposable elements in the sea anemone Anemonia viridis

Notice of republication An incomplete, earlier version of this article was published in error. The publisher apologizes for the error. This article was republished on May 21, 2019 to correct for this error. Please download the article again to view the correct version. The originally published, uncorrected article and the republished, corrected article are provided here for reference. Supporting information S1 File. Originally published, uncorrected article. (PDF) S2 File. Republished, corrected article. (PDF)1 Ocean acidification threatens to disrupt interactions between organisms throughout marine ecosystems. The diversity of reef-building organisms decreases as seawater CO2 increases alo…

research product

Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.

The effects of increasing atmospheric CO2 on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO2 gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 mu atm, minimum Omega(arag) 3.77), moderately CO2-enriched (median pCO(2) 592 mu atm, minimum Omega(arag) 2.96), and highly CO2-enriched (median pCO(2) 1611 mu at…

research product

Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities.

Ocean acidification may have far-reaching consequences for marine community and ecosystem dynamics, but its full impacts remain poorly understood due to the difficulty of manipulating pCO2 at the ecosystem level to mimic realistic fluctuations that occur on a number of different timescales. It is especially unclear how quickly communities at various stages of development respond to intermediate-scale pCO2 change and, if high pCO2 is relieved mid-succession, whether past acidification effects persist, are reversed by alleviation of pCO2 stress, or are worsened by departures from prior high pCO2 conditions to which organisms had acclimatized. Here, we used reciprocal transplant experiments al…

research product

Temporal fluctuations in seawater pCO2 may be as important as mean differences when determining physiological sensitivity in natural systems

AbstractMost studies assessing the impacts of ocean acidification (OA) on benthic marine invertebrates have used stable mean pH/pCO2 levels to highlight variation in the physiological sensitivities in a range of taxa. However, many marine environments experience natural fluctuations in carbonate chemistry, and to date little attempt has been made to understand the effect of naturally fluctuating seawater pCO2 (pCO2sw) on the physiological capacity of organisms to maintain acid–base homeostasis. Here, for the first time, we exposed two species of sea urchin with different acid–base tolerances, Paracentrotus lividus and Arbacia lixula, to naturally fluctuating pCO2sw conditions at shallow wat…

research product

Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical?temperate transition zone

AbstractRising atmospheric concentrations of carbon dioxide are causing surface seawater pH and carbonate ion concentrations to fall in a process known as ocean acidification. To assess the likely ecological effects of ocean acidification we compared intertidal and subtidal marine communities at increasing levels of pCO2 at recently discovered volcanic seeps off the Pacific coast of Japan (34° N). This study region is of particular interest for ocean acidification research as it has naturally low levels of surface seawater pCO2 (280–320 µatm) and is located at a transition zone between temperate and sub-tropical communities. We provide the first assessment of ocean acidification effects at …

research product

Individual and population-level responses to ocean acidification

- Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the …

research product

Ocean acidification at a coastal CO2 vent induces expression of stress-related transcripts and transposable elements in the sea anemone Anemonia viridis

Published version, available at: https://doi.org/10.1371/journal.pone.0210358 Ocean acidification threatens to disrupt interactions between organisms throughout marine ecosystems. The diversity of reef-building organisms decreases as seawater CO2 increases along natural gradients, yet soft-bodied animals, such as sea anemones, are often resilient. We sequenced the polyA-enriched transcriptome of adult sea anemone Anemonia viridis and its dinoflagellate symbiont sampled along a natural CO2 gradient in Italy to assess stress levels in these organisms. We found that about 1.4% of the anemone transcripts, but only ~0.5% of the Symbiodinium sp. transcripts were differentially expressed. Processe…

research product

Data from: Ocean acidification affects fish spawning but not paternity at CO2 seeps

Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification expected to occur owing to anthropogenic carbon dioxide emissions during this century. We provide the first evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by dominant nesting males. Key mating behaviours such as dominant male courtship and nest defence did not differ between sites with ambient versus elevated CO2 concentrations. Dominant males did, however, experience significantly lower rates of pair spawning at elevated CO2 levels. Despite the higher r…

research product