0000000001309699

AUTHOR

S. Rizzato

showing 5 related works from this author

Noise Figures of Merit of rf-SQUID-based Josephson Travelling Wave Parametric Amplifiers

2021

The characterization of the rf-SQUID-based JTWPA in terms of its noise figure and gain for different input states (Fock states or Coherent states) has been carried out. The spectral distribution of the noise temperature Tn and gain G presents a region where the amplifier has a relatively high gain with a thermal noise that can go beyond the standard quantum limit =ℏ/2 (valid only for single mode input states [44]) as shown in Fig. 3. The TWJPA is here biased in its 3WM regime and pumped at p = 12 GHz.

Noise FigurePower GainJosephson Traveling Wave Parameter AmplifierSettore ING-INF/01 - Elettronica
researchProduct

Bimodal Approach for Noise Figures of Merit Evaluation in Quantum-Limited Josephson Traveling Wave Parametric Amplifiers

2022

The advent of ultra-low noise microwave amplifiers revolutionized several research fields demanding quantum-limited technologies. Exploiting a theoretical bimodal description of a linear phase-preserving amplifier, in this contribution we analyze some of the intrinsic properties of a model architecture (i.e., an rf-SQUID based Josephson Traveling Wave Parametric Amplifier) in terms of amplification and noise generation for key case study input states (Fock and coherents). Furthermore, we present an analysis of the output signals generated by the parametric amplification mechanism when thermal noise fluctuations feed the device.

Superconducting microwave devicesMicrowave photonicMicrowave amplifiersCondensed Matter - SuperconductivityPhysicsFOS: Physical sciencesMicrowave photonics Noise figure Superconducting microwave devices.Condensed Matter PhysicsNoise figureSettore ING-INF/01 - ElettronicaSuperconducting microwave deviceElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)BandwidthMicrowave amplifierBandwidth; Gain; Microwave amplifiers; Microwave photonics; Noise figure; Physics; Superconducting microwave devicesMicrowave photonicsHardware_INTEGRATEDCIRCUITSPhysicGainElectrical and Electronic EngineeringPhysics Gain Microwave amplifiers Noise figure Superconducting microwave devices Microwave photonics Bandwidth Microwave photonics noise figure superconducting microwave devicesMicrowave photonics; Noise figure; Superconducting microwave devicesIEEE Transactions on Applied Superconductivity
researchProduct

CCDC 1477138: Experimental Crystal Structure Determination

2017

Related Article: R.Bertani, M.Mozzon, P.Sgarbossa, S.Tamburini, M.Casarin, G.Mangione, G.Casella, A.Venzo, S.Rizzato, A.Albinati|2017|Inorg.Chim.Acta|455|489|doi:10.1016/j.ica.2016.07.015

Space GroupCrystallographyCrystal Systemcis-bis(benzonitrile)-dichloro-platinumCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1477137: Experimental Crystal Structure Determination

2017

Related Article: R.Bertani, M.Mozzon, P.Sgarbossa, S.Tamburini, M.Casarin, G.Mangione, G.Casella, A.Venzo, S.Rizzato, A.Albinati|2017|Inorg.Chim.Acta|455|489|doi:10.1016/j.ica.2016.07.015

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescis-bis(acetonitrile)-dichloro-platinum
researchProduct

CCDC 1477139: Experimental Crystal Structure Determination

2017

Related Article: R.Bertani, M.Mozzon, P.Sgarbossa, S.Tamburini, M.Casarin, G.Mangione, G.Casella, A.Venzo, S.Rizzato, A.Albinati|2017|Inorg.Chim.Acta|455|489|doi:10.1016/j.ica.2016.07.015

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatestrans-bis(benzonitrile)-dichloro-platinum
researchProduct