0000000001309812
AUTHOR
Ilya Kondrasenko
Ambipolar Phosphine Derivatives to Attain True Blue OLEDs with 6.5% EQE
A family of new branched phosphine derivatives {Ph2N-(C6H4)n-}3P → E (E = O 1-3, n = 1-3; E = S 4-6, n = 1-3; E = Se 7-9, n = 1-3; E = AuC6F5 4-6, n = 1-3), which are the donor-acceptor type molecules, exhibit efficient deep blue room temperature fluorescence (λem = 403-483 nm in CH2Cl2 solution, λem = 400-469 nm in the solid state). Fine tuning the emission characteristics can be achieved varying the length of aromatic oligophenylene bridge -(C6H4)n-. The pyramidal geometry of central R3P → E fragment on the one hand disrupts π-conjugation between the branches to preserve blue luminescence and high triplet energy, while on the other hand provides amorphous materials to prevent excimer form…
Harnessing Fluorescence versus Phosphorescence Ratio via Ancillary Ligand Fine-Tuned MLCT Contribution
A series of gold(I) alkynyl-diphosphine complexes (XC6H4C2Au)PPh2—spacer—PPh2(AuC2C6H4X); spacer = —C2(C6H4)nC2— (A1, n = 2, X = CF3; A2, n = 2, X = OMe; A3, n = 3, X = CF3; A4, n = 3, X = OMe), —(C6H4)n— (B5, n = 3, X = OMe; B6, n = 4, X = OMe) were prepared, and their photophysical properties were investigated. The luminescence behavior of the titled compounds is dominated by the diphosphine spacer, which serves as an emitting ππ* chromophore. The complexes exhibit dual emission, comprising low and high energy bands of triplet (phosphorescence) and singlet (fluorescence) origins, respectively. The electron-donating characteristics of ancillary groups X significantly affect the LLCT/MLCT c…
CCDC 1583379: Experimental Crystal Structure Determination
Related Article: Ilya Kondrasenko, Kun-you Chung, Yi-Ting Chen, Juha Koivistoinen, Elena V. Grachova, Antti J. Karttunen, Pi-Tai Chou, Igor O. Koshevoy|2016|J.Phys.Chem.C|120|12196|doi:10.1021/acs.jpcc.6b03064