6533b85cfe1ef96bd12bca0c

RESEARCH PRODUCT

Harnessing Fluorescence versus Phosphorescence Ratio via Ancillary Ligand Fine-Tuned MLCT Contribution

Elena V. GrachovaPi-tai ChouIlya KondrasenkoKun You ChungIgor O. KoshevoyYi-ting ChenJuha KoivistoinenAntti J. Karttunen

subject

010405 organic chemistryChemistryLigandChromophore010402 general chemistry01 natural sciencesFluorescence0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsphosphorescenceCrystallographyGeneral EnergyIntersystem crossinggold complexesExcited stateOrganic chemistryfluorescenceSinglet statePhysical and Theoretical ChemistryLuminescencePhosphorescenceta116

description

A series of gold(I) alkynyl-diphosphine complexes (XC6H4C2Au)PPh2—spacer—PPh2(AuC2C6H4X); spacer = —C2(C6H4)nC2— (A1, n = 2, X = CF3; A2, n = 2, X = OMe; A3, n = 3, X = CF3; A4, n = 3, X = OMe), —(C6H4)n— (B5, n = 3, X = OMe; B6, n = 4, X = OMe) were prepared, and their photophysical properties were investigated. The luminescence behavior of the titled compounds is dominated by the diphosphine spacer, which serves as an emitting ππ* chromophore. The complexes exhibit dual emission, comprising low and high energy bands of triplet (phosphorescence) and singlet (fluorescence) origins, respectively. The electron-donating characteristics of ancillary groups X significantly affect the LLCT/MLCT contribution of both alkynyl ligand and the metal center into the lowest lying excited state. In turn, it substantially influences the rate of intersystem crossing kisc S1 → Tm (m ≥ 1) that allows for tuning the ratio fluorescence vs phosphorescence without alteration of the chromophore core. Quantum chemical analysis of...

10.1021/acs.jpcc.6b03064http://juuli.fi/Record/0274607016