Solvent directs the dimensionality of Cu-dicyanoimidazoles
In this paper, we report one-pot reactions of the same reactants 4,5-dicyanoimidazole and CuI in different solvents. In pure MeCN, the reaction resulted in previously reported MOF structure [Cu(4,5-dicyanoimidazole)]n.(MeCN)0.5n (1). On the other hand, when MeCN/MeOH solvent mixture was used, a new coordination polymer [Cu(4,5-dicyanoimidazole)(MeCN)(CuI)]n (2) was formed. The crystallization yielded very different structures as determined by X-ray crystallography. In 1, the solvent molecule acetonitrile occupies the MOF pores via weak interactions, but in 2 it is coordinated to the metal center. Computational DFT calculations and topological charge density analysis were utilized to explore…
Harnessing Fluorescence versus Phosphorescence Branching Ratio in (Phenyl)n-Bridged (n = 0–5) Bimetallic Au(I) Complexes
We have designed and synthesized a series of Au(I) complexes bearing either an alkynyl–(phenylene)n–diphosphine (A-0–A-3) or a (phenylene)n–diphosphine (B-1–B-5) bridge, among which the effective distance between Au(I) and the center of the emitting ππ* chromophore can be fine-tuned via the insertion of various numbers of phenylene spacers. We then demonstrated for the first time in a systematic manner the decrease of rate constant for S1 → T1 intersystem crossing (ISC) kisc as the increase of the effective distance. The results also unambiguously showed that the phosphorescence could be harvested via higher S0 → Sn (n > 1) electronic excitation, followed by fast Sn → Tm ISC and then the po…
Synthesis, electrochemical and theoretical studies of the Au(i)-Cu(i) heterometallic clusters bearing ferrocenyl groups
Treatment of the polymeric alkynyl compounds (AuC2R)n (R = Fc, C6H4Fc; Fc = ferrocenyl) with the diphosphine PPh2C6H4PPh2 gave complexes (RC2Au)PPh2C6H4PPh2(AuC2R) (1, R = Fc; 2, R = C6H4Fc) with end-capped ferrocenyl groups. The reactions of 1 or 2 with Cu(NCMe)4PF6 result in formation of the heterotrimetallic aggregates [{Au3Cu2(C2R)6}Au3(PPh2C6H4PPh2)3](PF6)2 (3, R = Fc; 4, R = C6H4Fc), which consist of the alkynyl clusters [Au3Cu2(C2R)6]−“wrapped” by the cationic [Au3(PPh2C6H4PPh2)3]3+“belt”. The novel compounds were characterized by NMR spectroscopy and ESI-MS measurements. The solid state structure of 3 is reported. Electrochemical properties of the complexes 1–4 have been studied. Th…
Ferrocenyl-functionalized tetranuclear gold(I) and gold(I)-copper(I) complexes based on tridentate phosphanes
Tetranuclear AuI–FeII dimetallic and AuI–CuI–FeII trimetallic complexes bearing ferrocenyl (Fc) groups have been assembled by using two triphosphane ligands, namely, (PPh2CH2)2PPh (dpmp) and (PPh2)3CH (tppm). The compositions and structural type of the clusters are dependent on the stereochemistry of the P donor ligands. The complexes [tppmAu3Cu(C2R)3]PF6 [R = Fc (1) and 4-C6H4-Fc (2)] adopt a trigonal pyramidal {Au3Cu} arrangement of the coordinating metal core, whereas for the compounds with the linear triphosphane [Au4(dpmp)2(C2R)2](PF6)2 [R = Fc (3) and 4-C6H4-Fc (4)], a planar rhomboidal {Au4} framework was found. Clusters 1–4 were characterized by NMR spectroscopy and ESI-MS measureme…
Sky-Blue Luminescent Au(I)-Ag(I) Alkynyl-Phosphine Clusters
Treatment of the (AuC2R)n acetylides with phosphine ligand 1,4-bis(diphenylphosphino)butane (PbuP) and Ag(+) ions results in self-assembly of the heterobimetallic clusters of three structural types depending on the nature of the alkynyl group. The hexadecanuclear complex [Au12Ag4(C2R)12(PbuP)6](4+) (1) is formed for R = Ph, and the octanuclear species [Au6Ag2(C2R)6(PbuP)3](2+) adopting two structural arrangements in the solid state were found for the aliphatic alkynes (R = Bu(t) (2), 2-propanolyl (3), 1-cyclohexanolyl (4), diphenylmethanolyl (5), 2-borneolyl (6)). The structures of the compounds 1-4 and 6 were determined by single crystal X-ray diffraction analysis. The NMR spectroscopic st…
Activation of the Cyano Group at Imidazole via Copper Stimulated Alcoholysis
Reactions of 4,5-dicyano-1-methylimidazole with CuX2 (X = Cl, Br) in alcohol solvents (ethanol and methanol) resulted in the formation of Cu(II) carboximidate complexes [CuCl2(5- cyano-4-C(OEt)N-1-methylimidazole)(EtOH)] (1), [Cu2(µ
Tandem β-Boration/Arylation of α,β-Unsaturated Carbonyl Compounds by Using a Single Palladium Complex To Catalyse Both Steps
Diphenyl(3-methyl-2-indolyl)phosphine (C(9)H(8)NPPh(2), 1) gives stable dimeric palladium(II) complexes that contain the phosphine in P,N-bridging coordination mode. On treating 1 with [Pd(O(2)CCH(3))(2)], the new complexes [Pd(mu-C(9)H(7)NPPh(2))(NCCH(3))](2) (2) or [Pd(mu-C(9)H(7)NPPh(2))(mu-O(2)CCH(3))](2) (3) were isolated, depending on the solvent used, acetonitrile or toluene, respectively. Further reaction of 3 with the ammonium salt of 1 led to the substitution of one carboxylate ligand to afford [Pd(mu-C(9)H(7)NPPh(2))(3)(mu-O(2)CCH(3))] (4), in which the bimetallic unit is bonded by three C(9)H(7)NPPh(2)(-) moieties and one carboxylate group. Using this methodology, [Pd(2)(mu-C(6)…
Toward luminescence vapochromism of tetranuclear AuI-Cu I clusters
A family of triphosphine gold–copper clusters bearing aliphatic and hydroxyaliphatic alkynyl ligands of general formula [HC(PPh2)3Au3Cu(C2R)3]+ (R = cyclohexyl (1), cyclopentyl (2), But (3), cyclohexanolyl (4), cyclopentanolyl (5), 2,6-dimethylheptanolyl (6), 2-methylbutanolyl (7), diphenylmethanolyl (8)) was synthesized via a self-assembly protocol, which involves treatment of the (AuC2R)n acetylides with the (PPh2)3CH ligand in the presence of Cu+ ions and NEt3. Addition of Cl– or Br– anions to complex 8 results in coordination of the halides to the copper atoms to give neutral HC(PPh2)3Au3CuHal(C2COHPh2)3 derivatives (Hal = Cl (9), Br (10)). The title compounds were characterized by NMR …
Solid-state luminescence of Au-Cu-alkynyl complexes induced by metallophilicity-driven aggregation.
A new series of homoleptic alkynyl complexes, [{Au2Cu2(C2R)4}n] (R=C3H7O (1), C6H11O (2), C9H19O (3), C13H11O (4)), were obtained from Au(SC4H8)Cl, Cu(NCMe)4PF6, and the corresponding alkyne in the presence of a base (NEt3). Complexes 1-4 aggregate upon crystallization into polymeric chains through extensive metallophilic interactions. The cluster that contains fluorenolyl functionalities, C13H9O (5), crystallizes in its molecular form as a disolvate, [Au2Cu2(C2C13H9O)4]·2THF. The substitution of weakly bound THF molecules with pyridine molecules leads to the complex [Au2Cu2(C2C13H9O)4]·2py (6), thus giving two polymorphs in the solid state. Such structural diversity is established through …
Electrochemically assisted anion insertion in Au(I)–Cu(I) heterotrimetallic clusters bearing ferrocenyl groups: Application to the fluoride/chloride discrimination in aqueous media
The heterotrimetallic Au(I)–Cu(I) aggregate [{Au3Cu2(C2C6H4Fc)6}Au3(PPh2C6H4PPh2)3](PF6)2 exhibits a well-defined solid state electrochemistry in contact with aqueous media, based on ferrocenyl-centred oxidation processes involving anion insertion. Upon attachment of microparticulate deposits of the cluster to graphite electrodes, distinctive electrochemical responses can be obtained for fluoride and chloride ions in aqueous media. Keywords: Heterometallic clusters, Gold, Copper, Fluoride/chloride discrimination, Electrochemical anion insertion
Triphosphine-supported bimetallic Au(I)-M(I) (M = Ag, Cu) alkynyl clusters.
The reactions of gold acetylides (AuC2R)n with triphosphine ligands PPh2-(CH2)n-PPh-(CH2)2-PPh2 (n = 1, dpmp; 2, dpep) in the presence of M(+) ions (M = Cu, Ag) lead to an assembly of the heterometallic clusters, the composition of which is determined by the steric bulkiness of the alkynyl groups and the flexibility of the phosphine motifs. For R = Ph, an unprecedented hexanuclear complex [Au5Cu(C2R)4(dpmp)2](2+) (1) was isolated, while for the aliphatic alkynes (R = 1-cyclohexanolyl, 2-borneolyl, 2,6-dimethyl-4-heptanolyl) a family of compounds based on a tetrametallic framework was prepared, [Au3Cu(C2R)3(dpmp)](+) (2, R = 1-cyclohexanolyl), [Au3M(C2R)3(dpep)]2(+2) (3, M = Cu, R = 1-cycloh…
Determination of Individual Gibbs Energies of Anion Transfer and Excess Gibbs Energies Using an Electrochemical Method Based on Insertion Electrochemistry of Solid Compounds
A method is presented to determine, individually and with minimal extra-thermodynamic assumptions, the Gibbs energy for anion transfer between two solvents using solid state electrochemistry of alkynyldiphosphine dinuclear Au(I) complexes (AuC2R)2PPh2C6H4PPh2 (L1, R = Fc; L2, R = C6H4Fc) and the heterometallic Au(I)–Cu(I) [{Au3Cu2(C2R)6}Au3(PPh2C6H4PPh2)3](PF6)2 (L3, R = Fc; L4, R = C6H4Fc) cluster complexes containing ferrocenyl units. These compounds exhibit a well-defined, essentially reversible solid-state oxidation in contact with different electrolytes, based on ferrocenyl-centered oxidation processes involving anion insertion. Voltammetric data can be used for a direct measurement of…
Synthesis of a New C3-Symmetric Tripodal P4-Tetradentate Ligand and Its Application to the Formation of Chiral Metal Complexes
A novel C3-symmetric tetradentate tripodal ligand with phosphorus as coordinating atoms has been synthesized in good yields. Its coordination ability through the four phosphorus atoms, three at the...
Harvesting Fluorescence from Efficient Tk -> Sj (j, k > 1) Reverse Intersystem Crossing for ??* Emissive Transition-Metal Complexes
Using a bimetallic Au(I) complex bearing alkynyl-(phenylene)3-diphosphine ligand (A-3), we demonstrate that the fluorescence can be exquisitely harvested upon T1 → Tk (k > 1) excitation followed by Tk → Sj (j, k > 1) intersystem crossing (ISC) back to the S1 state. Upon S0 → S1 355 nm excitation, the S1 → T1 intersystem crossing rate has been determined to be 8.9 × 108 s–1. Subsequently, in a two-step laser pump–probe experiment, following a 355 nm laser excitation, the 532 nm T1 → Tk probing gives the prominent blue 375 nm fluorescence, and this time-dependent pump–probe signal correlates well with the lifetime of the T1 state. Careful examination reveals the efficiency of Tk → Sj (j, k > …
Multifaceted Palladium Catalysts Towards the Tandem Diboration-Arylation Reactions of Alkenes
Novel Pd(2) (6+) compounds have been synthesized in high yield. These compounds and their Pd(2) (4+) counterparts as synthetic precursors mediate the diboration of vinylarenes and aliphatic 1-alkenes, and under mild and basic reaction conditions they produce a variety of 1,2-diboronate esters with excellent conversions and chemoselectivities. The presence of bis(catecholato)diboron (B(2)cat(2)) favours the reduction of Pd(III) to Pd(II), while the catalytic precursor of Pd(II) is transformed into Pd(0)-nanoparticles. An "in situ" catalytic tandem reaction has been designed to transform the diboronate intermediates into the monoarylated product, which after oxidative workup, provides the car…
Supramolecular Construction of Cyanide-Bridged Re I Diimine Multichromophores
The reactions of labile [Re(diimine)(CO)3(H2O)]+ precursors (diimine = 2,2′-bipyridine, bpy; 1,10-phenanthroline, phen) with dicyanoargentate anion produce the dirhenium cyanide-bridged compounds [{Re(diimine)(CO)3}2CN)]+ (1 and 2). Substitution of the axial carbonyl ligands in 2 for triphenylphosphine gives the derivative [{Re(phen)(CO)2(PPh3)}2CN]+ (3), while the employment of a neutral metalloligand [Au(PPh3)(CN)] affords heterobimetallic complex [{Re(phen)(CO)3}NCAu(PPh3)]+ (4). Furthermore, the utilization of [Au(CN)2]−, [Pt(CN)4]2–, and [Fe(CN)6]4–/3– cyanometallates leads to the higher nuclearity aggregates [{Re(diimine)(CO)3NC}xM]m+ (M = Au, x = 2, 5 and 6; Pt, x = 4, 7 and 8; Fe, x…
Electrochemical chiral recognition by microparticle coatings of Pd complexes with bridging cyclometalated phosphines
Abstract The palladium(II) dinuclear complex with bridging cyclometalated phosphines, {Pd2[μ-(C6H4)PPh2]2(μ-O2CCH3)2} (Pd2L2), having a paddlewheel structure, is reversibly oxidized in CH2Cl2 to a dinuclear palladium(III) analogue via two successive one-electron steps. Solid state voltammetry of Pd2L2 in contact with aqueous electrolytes produce as one-electron oxidation with two competing mechanisms involving anion intercalation/anion binding between/to metal centres, chloride ions acting as inhibitors for the first pathway. R- and S-Pd2L2 produces a significant stereoselective electrocatalytic activity with respect to the oxidation of l - and d -glutamic acid in alkaline media.
Ambipolar Phosphine Derivatives to Attain True Blue OLEDs with 6.5% EQE
A family of new branched phosphine derivatives {Ph2N-(C6H4)n-}3P → E (E = O 1-3, n = 1-3; E = S 4-6, n = 1-3; E = Se 7-9, n = 1-3; E = AuC6F5 4-6, n = 1-3), which are the donor-acceptor type molecules, exhibit efficient deep blue room temperature fluorescence (λem = 403-483 nm in CH2Cl2 solution, λem = 400-469 nm in the solid state). Fine tuning the emission characteristics can be achieved varying the length of aromatic oligophenylene bridge -(C6H4)n-. The pyramidal geometry of central R3P → E fragment on the one hand disrupts π-conjugation between the branches to preserve blue luminescence and high triplet energy, while on the other hand provides amorphous materials to prevent excimer form…
Isolation of enantiomerically pure organometallic palladium compounds: synthesis of the triangles prepared from enantiopure [cis-Pd2(C6H4PPh2)2(NCCH3)4]2+
Reaction of the racemic [Pd(C(6)H(4)PPh(2))Br](4) () with the silver salt of 1R-(1alpha,2beta,3alpha)]-3-methyl-2-(nitromethyl)-5-oxocyclopentaneacetate, (R)-AgO(2)CR*, results in the formation of a mixture of diastereoisomers (RRR)- and (SRR)- of the formula Pd(2)(C(6)H(4)PPh(2))(2)(O(2)CR*)(2) that were separated by standard chromatographic methods. Each diastereoisomer was readily converted into the tetrametallic stereoisomers (SS)- and (RR)-, of the formula [Pd(C(6)H(4)PPh(2))Br](4) that were isolated and characterized by X-ray crystallography. The R enantiomer of the solvated cationic species [cis-Pd(2)(C(6)H(4)PPh(2))(2)(NCCH(3))(4)](2+), obtained from (RR)-, was reacted with ammonium…
Harnessing Fluorescence versus Phosphorescence Ratio via Ancillary Ligand Fine-Tuned MLCT Contribution
A series of gold(I) alkynyl-diphosphine complexes (XC6H4C2Au)PPh2—spacer—PPh2(AuC2C6H4X); spacer = —C2(C6H4)nC2— (A1, n = 2, X = CF3; A2, n = 2, X = OMe; A3, n = 3, X = CF3; A4, n = 3, X = OMe), —(C6H4)n— (B5, n = 3, X = OMe; B6, n = 4, X = OMe) were prepared, and their photophysical properties were investigated. The luminescence behavior of the titled compounds is dominated by the diphosphine spacer, which serves as an emitting ππ* chromophore. The complexes exhibit dual emission, comprising low and high energy bands of triplet (phosphorescence) and singlet (fluorescence) origins, respectively. The electron-donating characteristics of ancillary groups X significantly affect the LLCT/MLCT c…
Dinuclear palladium(ii) compounds with bridging cyclometalated phosphines. Synthesis, crystal structure and electrochemical study
The structural characterization of bis-cyclometalated palladium(II) compounds of formula Pd2[(micro-(C6X4)PPh2]2(micro-O2CR)2 [X = H, R = CH3 (3), CF3 (4), C(CH3)3 (5) and C6F5 (6); X = F, R = CH3 (7) and CF3 (8)], has confirmed its paddle wheel structure with two palladium atoms bridged by two acetates and two metalated phosphines in a head-to-tail arrangement. The Pd...Pd distances are in the range 2.6779(16)-2.7229(8) A. Under cyclic voltammetric conditions, compounds 3-6, in CH2Cl2 solution, were found to undergo a reversible oxidation peak in the range of potential values 0.84-1.25 V. A second partially-reversible oxidation is observed at more positive potentials (1.37-1.55 V). For com…
ChemInform Abstract: Multifaceted Palladium Catalysts Towards the Tandem Diboration-Arylation Reactions of Alkenes.
Novel Pd(2) (6+) compounds have been synthesized in high yield. These compounds and their Pd(2) (4+) counterparts as synthetic precursors mediate the diboration of vinylarenes and aliphatic 1-alkenes, and under mild and basic reaction conditions they produce a variety of 1,2-diboronate esters with excellent conversions and chemoselectivities. The presence of bis(catecholato)diboron (B(2)cat(2)) favours the reduction of Pd(III) to Pd(II), while the catalytic precursor of Pd(II) is transformed into Pd(0)-nanoparticles. An "in situ" catalytic tandem reaction has been designed to transform the diboronate intermediates into the monoarylated product, which after oxidative workup, provides the car…
High Yield Syntheses of Stable, Singly Bonded Pd26+ Compounds
A general method for the syntheses of dipalladium compounds having a singly bonded Pd26+ core and the formula R,S-cis-Pd2(C6H4PPh2)2(O2CR)2Cl2 is described. When the alkyl group in the carboxylate ligands is an electron donating group, the compounds are stable and the yields high. The Pd-Pd distances for the diamagnetic compounds with R = CF3 and CMe3 are 2.5434(4) and 2.5241(9) A, respectively. Calculations at the DFT level suggest that the electronic configuration is sigma2pi4delta2delta*2pi*4. These represent rare examples of palladium(III) compounds.
Metallophilicity-assisted assembly of phosphine-based cage molecules.
A family of supramolecular cage molecules has been obtained via self-assembly of the phosphine-gold coordination complexes following an aurophilicity-driven aggregation approach. Use of the di- (PP) or tridentate (PPP) phosphine ligands Pn (n = 2, 3) with rigid polyaromatic backbones leads to clean formation of the coordination Pn(Au(tht))n(n+) species, sequential treatment of which with H2O/NEt3 and excess of H2NBu(t) gives the finite 3D structures of two major types. The cylindrical-like hexametallic cages [(PPAu2)3(μ3-NBu(t))2](2+) are based on the diphosphines PP = 1,4-bis(diphenylphosphino)benzene (1), 4,4'-bis(diphenylphosphino)biphenyl (2), 4,4"-bis(diphenylphosphino)terphenyl (3), w…
Estimation of free energies of anion transfer from solid-state electrochemistry of alkynyl-based Au(I) dinuclear and Au(I)–Cu(I) cluster complexes containing ferrocenyl groups
A method is presented to determine the free energy for anion transfer between two solvents. This is based on solid-state electrochemistry of alkynyl-based dinuclear Au(I) complexes (AuC2R)2PPh2C6H4PPh2 (L1: R=Fc; L2: R=C6H4Fc) and heterometallic Au(I)–Cu(I) [{Au3Cu2 (C2R)6}Au3(PPh2C6H4PPh2)3](PF6)2 (L3: R=Fc; L4: R=C6H4Fc) complexes. These compounds exhibit a reversible ferrocenyl-centred solid-state oxidation processes involving anion insertion in contact with aqueous, MeOH and MeCN electrolytes. Voltammetric data can be used for a direct measurement of the free energy of ion transfer using midpeak potentials in solutions of suitable salts in the solvents separately or in mixtures of the s…
CCDC 955945: Experimental Crystal Structure Determination
Related Article: Julia R. Shakirova, Elena V. Grachova, Alexei S. Melnikov, Vladislav V. Gurzhiy, Sergey P. Tunik, Matti Haukka, Tapani A. Pakkanen, and Igor O. Koshevoy|2013|Organometallics|32|4061|doi:10.1021/om301100v
CCDC 916957: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611
CCDC 916956: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611
CCDC 962935: Experimental Crystal Structure Determination
Related Article: Ilya S. Krytchankou, Dmitry V. Krupenya, Antti J. Karttunen, Sergey P. Tunik, Tapani A. Pakkanen, Pi-Tai Chou, Igor O. Koshevoy|2014|Dalton Trans.|43|3383|doi:10.1039/C3DT52658E
CCDC 952114: Experimental Crystal Structure Determination
Related Article: Julia R. Shakirova, Elena V. Grachova, Antti J. Karttunen, Vladislav V. Gurzhiy, Sergey P. Tunik, Igor O. Koshevoy|2014|Dalton Trans.|43|6236|doi:10.1039/C3DT53645A
CCDC 1873814: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 1921770: Experimental Crystal Structure Determination
Related Article: Rezeda Gayfullina, Sirpa Jääskeläinen, Igor O. Koshevoy, Pipsa Hirva|2019|Inorganics|7|87|doi:10.3390/inorganics7070087
CCDC 962936: Experimental Crystal Structure Determination
Related Article: Ilya S. Krytchankou, Dmitry V. Krupenya, Antti J. Karttunen, Sergey P. Tunik, Tapani A. Pakkanen, Pi-Tai Chou, Igor O. Koshevoy|2014|Dalton Trans.|43|3383|doi:10.1039/C3DT52658E
CCDC 916958: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611
CCDC 977750: Experimental Crystal Structure Determination
Related Article: Julia R. Shakirova, Elena V. Grachova, Antti J. Karttunen, Vladislav V. Gurzhiy, Sergey P. Tunik, Igor O. Koshevoy|2014|Dalton Trans.|43|6236|doi:10.1039/C3DT53645A
CCDC 883708: Experimental Crystal Structure Determination
Related Article: Julia R. Shakirova, Elena V. Grachova, Alexei S. Melnikov, Vladislav V. Gurzhiy, Sergey P. Tunik, Matti Haukka, Tapani A. Pakkanen, and Igor O. Koshevoy|2013|Organometallics|32|4061|doi:10.1021/om301100v
CCDC 904087: Experimental Crystal Structure Determination
Related Article: Julia R. Shakirova, Elena V. Grachova, Alexei S. Melnikov, Vladislav V. Gurzhiy, Sergey P. Tunik, Matti Haukka, Tapani A. Pakkanen, and Igor O. Koshevoy|2013|Organometallics|32|4061|doi:10.1021/om301100v
CCDC 916959: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611
CCDC 1921768: Experimental Crystal Structure Determination
Related Article: Rezeda Gayfullina, Sirpa Jääskeläinen, Igor O. Koshevoy, Pipsa Hirva|2019|Inorganics|7|87|doi:10.3390/inorganics7070087
CCDC 916955: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611
CCDC 962938: Experimental Crystal Structure Determination
Related Article: Ilya S. Krytchankou, Dmitry V. Krupenya, Antti J. Karttunen, Sergey P. Tunik, Tapani A. Pakkanen, Pi-Tai Chou, Igor O. Koshevoy|2014|Dalton Trans.|43|3383|doi:10.1039/C3DT52658E
CCDC 937899: Experimental Crystal Structure Determination
Related Article: Thuy Minh Dau, Julia R. Shakirova, Antonio Doménech, Janne Jänis, Matti Haukka, Elena V. Grachova, Tapani A. Pakkanen, Sergey P. Tunik, Igor O. Koshevoy|2013|Eur.J.Inorg.Chem.||4976|doi:10.1002/ejic.201300615
CCDC 1583379: Experimental Crystal Structure Determination
Related Article: Ilya Kondrasenko, Kun-you Chung, Yi-Ting Chen, Juha Koivistoinen, Elena V. Grachova, Antti J. Karttunen, Pi-Tai Chou, Igor O. Koshevoy|2016|J.Phys.Chem.C|120|12196|doi:10.1021/acs.jpcc.6b03064
CCDC 1921769: Experimental Crystal Structure Determination
Related Article: Rezeda Gayfullina, Sirpa Jääskeläinen, Igor O. Koshevoy, Pipsa Hirva|2019|Inorganics|7|87|doi:10.3390/inorganics7070087
CCDC 1873813: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 937897: Experimental Crystal Structure Determination
Related Article: Thuy Minh Dau, Julia R. Shakirova, Antonio Doménech, Janne Jänis, Matti Haukka, Elena V. Grachova, Tapani A. Pakkanen, Sergey P. Tunik, Igor O. Koshevoy|2013|Eur.J.Inorg.Chem.||4976|doi:10.1002/ejic.201300615
CCDC 938077: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Antti J. Karttunen, Ilya S. Kritchenkou, Dmitrii V. Krupenya, Stanislav I. Selivanov, Alexei S. Melnikov, Sergey P. Tunik, Matti Haukka, and Tapani A. Pakkanen|2013|Inorg.Chem.|52|3663|doi:10.1021/ic302105a
CCDC 938080: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Antti J. Karttunen, Ilya S. Kritchenkou, Dmitrii V. Krupenya, Stanislav I. Selivanov, Alexei S. Melnikov, Sergey P. Tunik, Matti Haukka, and Tapani A. Pakkanen|2013|Inorg.Chem.|52|3663|doi:10.1021/ic302105a
CCDC 2115418: Experimental Crystal Structure Determination
Related Article: Pipsa Hirva, Sirpa Jääskeläinen, Rezeda Gayfullina, Henna Korhonen, Igor O. Koshevoy|2022|Solid State Sciences|128|106885|doi:10.1016/j.solidstatesciences.2022.106885
CCDC 938078: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Antti J. Karttunen, Ilya S. Kritchenkou, Dmitrii V. Krupenya, Stanislav I. Selivanov, Alexei S. Melnikov, Sergey P. Tunik, Matti Haukka, and Tapani A. Pakkanen|2013|Inorg.Chem.|52|3663|doi:10.1021/ic302105a
CCDC 1873815: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 962933: Experimental Crystal Structure Determination
Related Article: Ilya S. Krytchankou, Dmitry V. Krupenya, Antti J. Karttunen, Sergey P. Tunik, Tapani A. Pakkanen, Pi-Tai Chou, Igor O. Koshevoy|2014|Dalton Trans.|43|3383|doi:10.1039/C3DT52658E
CCDC 1873817: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 872767: Experimental Crystal Structure Determination
Related Article: Julia R. Shakirova, Elena V. Grachova, Alexei S. Melnikov, Vladislav V. Gurzhiy, Sergey P. Tunik, Matti Haukka, Tapani A. Pakkanen, and Igor O. Koshevoy|2013|Organometallics|32|4061|doi:10.1021/om301100v
CCDC 962934: Experimental Crystal Structure Determination
Related Article: Ilya S. Krytchankou, Dmitry V. Krupenya, Antti J. Karttunen, Sergey P. Tunik, Tapani A. Pakkanen, Pi-Tai Chou, Igor O. Koshevoy|2014|Dalton Trans.|43|3383|doi:10.1039/C3DT52658E
CCDC 962937: Experimental Crystal Structure Determination
Related Article: Ilya S. Krytchankou, Dmitry V. Krupenya, Antti J. Karttunen, Sergey P. Tunik, Tapani A. Pakkanen, Pi-Tai Chou, Igor O. Koshevoy|2014|Dalton Trans.|43|3383|doi:10.1039/C3DT52658E
CCDC 938079: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Antti J. Karttunen, Ilya S. Kritchenkou, Dmitrii V. Krupenya, Stanislav I. Selivanov, Alexei S. Melnikov, Sergey P. Tunik, Matti Haukka, and Tapani A. Pakkanen|2013|Inorg.Chem.|52|3663|doi:10.1021/ic302105a
CCDC 2115419: Experimental Crystal Structure Determination
Related Article: Pipsa Hirva, Sirpa Jääskeläinen, Rezeda Gayfullina, Henna Korhonen, Igor O. Koshevoy|2022|Solid State Sciences|128|106885|doi:10.1016/j.solidstatesciences.2022.106885
CCDC 937898: Experimental Crystal Structure Determination
Related Article: Thuy Minh Dau, Julia R. Shakirova, Antonio Doménech, Janne Jänis, Matti Haukka, Elena V. Grachova, Tapani A. Pakkanen, Sergey P. Tunik, Igor O. Koshevoy|2013|Eur.J.Inorg.Chem.||4976|doi:10.1002/ejic.201300615
CCDC 872766: Experimental Crystal Structure Determination
Related Article: Julia R. Shakirova, Elena V. Grachova, Alexei S. Melnikov, Vladislav V. Gurzhiy, Sergey P. Tunik, Matti Haukka, Tapani A. Pakkanen, and Igor O. Koshevoy|2013|Organometallics|32|4061|doi:10.1021/om301100v
CCDC 1873812: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 1873819: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 1921767: Experimental Crystal Structure Determination
Related Article: Rezeda Gayfullina, Sirpa Jääskeläinen, Igor O. Koshevoy, Pipsa Hirva|2019|Inorganics|7|87|doi:10.3390/inorganics7070087
CCDC 1873818: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 1873820: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 938076: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Antti J. Karttunen, Ilya S. Kritchenkou, Dmitrii V. Krupenya, Stanislav I. Selivanov, Alexei S. Melnikov, Sergey P. Tunik, Matti Haukka, and Tapani A. Pakkanen|2013|Inorg.Chem.|52|3663|doi:10.1021/ic302105a
CCDC 1873816: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 916953: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611
CCDC 955946: Experimental Crystal Structure Determination
Related Article: Julia R. Shakirova, Elena V. Grachova, Alexei S. Melnikov, Vladislav V. Gurzhiy, Sergey P. Tunik, Matti Haukka, Tapani A. Pakkanen, and Igor O. Koshevoy|2013|Organometallics|32|4061|doi:10.1021/om301100v
CCDC 916954: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611