0000000001310269

AUTHOR

Simon Bahrndorff

showing 5 related works from this author

Effects of photoperiod on life-history and thermal stress resistance traits across populations of Drosophila subobscura

2019

Introduction Organisms use environmental cues to match their phenotype with the future availability of resources and environmental conditions. Changes in the magnitude and frequency of environmental cues such as photoperiod and temperature along latitudes can be used by organisms to predict seasonal changes. While the role of temperature variation on the induction of plastic and seasonal responses is well established, the importance of photoperiod for predicting seasonal changes is less explored. Materials and methods Here we studied changes in life‐history and thermal stress resistance traits in Drosophila subobscura in response to variation in photoperiod (6:18, 12:12 and 18:6 light:dark …

0106 biological sciencesendocrine systemRange (biology)lämmönsietomahlakärpäsetPopulationplastisuusevoluutioZoologyadaptationBiologyphotoperiod010603 evolutionary biology01 natural sciencesthermal toleranceEvolutionsbiologi03 medical and health sciencesevolutioneducationEcology Evolution Behavior and Systematics030304 developmental biologyNature and Landscape ConservationLocal adaptationOriginal Research2. Zero hungerphotoperiodismsopeutuminen0303 health scienceseducation.field_of_studyEvolutionary BiologyEcologyResistance (ecology)environmental cuesilmastonmuutoksetDrosophila subobscuraclimate change13. Climate actionplasticitypäivänpituusTraitta1181DrosophilaAdaptation
researchProduct

Heat hardening capacity in Drosophila melanogaster is life stage-specific and juveniles show the highest plasticity

2019

Variations in stress resistance and adaptive plastic responses during ontogeny have rarely been addressed, despite the possibility that differences between life stages can affect species' range margins and thermal tolerance. Here, we assessed the thermal sensitivity and hardening capacity of Drosophila melanogaster across developmental stages from larval to the adult stage. We observed strong differences between life stages in heat resistance, with adults being most heat resistant followed by puparia , pupae and larvae . The impact of heat hardening (1 h at 35°C) on heat resistance changed during ontogeny, with the highest positive effect of hardening observed in puparia and pupae and the …

0106 biological scienceslife stage-specific plasticityHot TemperaturelämmönsietoOntogenyZoologyLife stage-specific plasticitythermal sensitivityBiologyPlasticity010603 evolutionary biology01 natural sciences03 medical and health sciencesThermal sensitivityJuvenileClimate changeHeat resistanceAnimalsAdult stageHeat shock030304 developmental biology0303 health sciencesLarvaEvolutionary Biologyhardeningheat resistancefungiPupabanaanikärpänenilmastonmuutoksetAgricultural and Biological Sciences (miscellaneous)Pupaclimate changeDrosophila melanogasterEctothermLarvaHardeningta1181General Agricultural and Biological SciencesHeat-Shock Response
researchProduct

Table S1 and S2 from Heat hardening capacity in Drosophila melanogaster is life stage specific and juveniles show the highest plasticity

2019

Table S1. Tukey's post-hoc test results after false discovery rate correction to compare the heat resistance of hardened and non-hardened individuals at different life stages exposed to 25 ºC compared to corresponding 37 ºC test temperature. The table shows the sum of square (SS), Fdf ratio and the p-values.; Table S2. Tukey's post-hoc test results after false discovery rate (FDR) correction to compare the heat resistance of different life stages at different test temperatures. The table shows the Fdf ratio and the p-values with p < 0.05 in bold.

researchProduct

Data from: Heat hardening capacity in Drosophila melanogaster is life stage specific and juveniles show the highest plasticity

2019

Variations in stress resistance and adaptive plastic responses during ontogeny have rarely been addressed, despite the possibility that differences between life stages can affect species' range margins and thermal tolerance. Here, we assessed the thermal sensitivity and hardening capacity of Drosophila melanogaster across developmental stages from larval to the adult stage. We observed strong differences between life stages in heat resistance, with adults being most heat resistant followed by puparia, pupae and larvae. The impact of heat hardening (1 h at 35°C) on heat resistance changed during ontogeny, with the highest positive effect of hardening observed in puparia and pupae and the low…

medicine and health carehardeningfungilife stage specific plasticityMedicineHeat resistanceLife sciences
researchProduct

Data from: Effects of photoperiod on life-history and thermal stress resistance traits across populations of Drosophila subobscura

2019

Intro: Organisms use environmental cues to match their phenotype with the future availability of resources and environmental conditions. Changes in the magnitude and frequency of environmental cues such as photoperiod and temperature along latitudes can be used by organisms to predict seasonal changes. While the role of temperature variation on the induction of plastic and seasonal responses is well established, the importance of photoperiod for predicting seasonal changes is less explored. M&M: Here we studied changes in life-history and thermal stress resistance traits in Drosophila subobscura in response to variation in photoperiod (6:18, 12:12 and 18:6 light:dark cycles) mimicking s…

medicine and health careendocrine systemDrosophila subobscuraenvironmental cuesMedicineLife sciences
researchProduct