0000000001311429

AUTHOR

Javier Arístegui

Effect of Intensity and Mode of Artificial Upwelling on Particle Flux and Carbon Export

Reduction of anthropogenic CO2 emissions alone will not sufficiently restrict global warming and enable the 1.5°C goal of the Paris agreement to be met. To effectively counteract climate change, measures to actively remove carbon dioxide from the atmosphere are required. Artificial upwelling has been proposed as one such carbon dioxide removal technique. By fueling primary productivity in the surface ocean with nutrient-rich deep water, it could potentially enhance downward fluxes of particulate organic carbon (POC) and carbon sequestration. In this study we investigated the effect of different intensities of artificial upwelling combined with two upwelling modes (recurring additions vs. on…

research product

Upwelled plankton community modulates surface bloom succession and nutrient availability in a natural plankton assemblage

Upwelling of nutrient-rich waters into the sunlit surface layer of the ocean supports high primary productivity in eastern boundary upwelling systems (EBUSs). However, subsurface waters contain not only macronutrients (N, P, Si) but also micronutrients, organic matter and seed microbial communities that may modify the response to macronutrient inputs via upwelling. These additional factors are often neglected when investigating upwelling impacts on surface ocean productivity. Here, we investigated how different components of upwelled water (macronutrients, organic nutrients and seed communities) drive the response of surface plankton communities to upwelling in the Peruvian coastal zone. Re…

research product

Factors controlling plankton productivity, particulate matter stoichiometry, and export fluxin the coastal upwelling system off Peru

Abstract. Eastern boundary upwelling systems (EBUS) are among the most productive marine ecosystems on Earth. The high productivity in surface waters is facilitated by upwelling of nutrient-rich deep waters, with high light availability enabling fast phytoplankton growth and nutrient utilization. However, there are numerous biotic and abiotic factors modifying productivity and biogeochemical processes. Determining these factors is important because EBUS are considered hotspots of climate change, and reliable predictions on their future functioning requires understanding of the mechanisms driving biogeochemical cycles therein. In this study, we used in situ mesocosms to obtain mechanistic un…

research product

KOSMOS 2017 Peru Side Experiment: nutrients, phytoplankton abundances, enzyme rates, photophysiology

This data was collected during an short-term incubation experiment in March 2017 that investigated the response of a surface plankton community to upwelling. This experiment was carried in the framework of the SFB754-funded KOSMOS mesocosm study that took place in La Punta, Callao, Peru between February-April 2017. A total of six different treatments were used to disentangle chemical and biological characteristics of deep water that influence surface plankton blooms: 2 different deep water sources with different nutrient concentrations; 3 treatments to distinguish the effects of inorganic nutrients, organic nutrients and deep water microbial populations. Measured variables include inorganic…

research product