0000000001312418
AUTHOR
Eduardo Chamorro
Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study
The electrophilic/nucleophilic character of a series of captodative (CD) ethylenes involved in polar cycloaddition reactions has been studied using DFT methods at the B3LYP/6-31G(d) level of theory. The transition state structures for the electrophilic/nucleophilic interactions of two CD ethylenes toward a nucleophilically activated ethylene, 2-methylene-1,3-dioxolane, and an electrophilically activated ethylene, 1,1-dicyanoethyelene, have been studied, and their electronic structures have been characterized using both NBO and ELF methods. Analysis of the reactivity indexes of the CD ethylenes explains the reactivity of these species. While the electrophilicity of the molecules accounts for…
A combined experimental and theoretical study of the polar [3+2] cycloaddition of electrophilically activated carbonyl ylides with aldehydes and imines
International audience; Numerous 2,5-diaryl-1,3-dioxolane-4,4-dicarbonitriles and 2,4-diphenyl-1,3-oxazolidine-5,5- dicarbonitriles have been synthesized by [3+2] cycloaddition reactions between carbonyl ylides generated from epoxides, and aldehydes or imines. In contrast to the use of aldehydes (3,4,5- trimethoxybenzaldehyde, piperonal, 1-naphthaldehyde, indole-3-carboxaldehyde, furan-2- carboxaldehyde and thiophene-2-carboxaldehyde), the reactions performed with imines (N- (phenylmethylene)methanamine, N-(1,3-benzodioxol-5-ylmethylene)propylamine, N-(1,3-benzodioxol- 5-ylmethylene)butylamine and N-(1,3-benzodioxol-5-ylmethylene)benzylamine) proceed diastereoselectively. The effect of micr…
On the nature of parr functions to predict the most reactive sites along organic polar reactions
Abstract Very recently, local electrophilic and nucleophilic “Parr functions” were empirically introduced (L.R. Domingo, P. Perez, J.A. Saez RSC Adv. 3 (2013) 1486) in order to properly characterize the most reactive sites along polar chemical reactions. This Letter reports a theoretical advance to the new methodology by identifying these quantities with key Fukui descriptors of the spin-polarized density functional theory . Given such framework properly incorporates the treatment of both charge-transfer and spin-polarization, this finding provides a significant insight and substantial step forward within the field of a chemical reactivity theory based on the conceptual framework of density…
Understanding the mechanism of non-polar diels-alder reactions. A comparative elf analysis of concerted and stepwise diradical mechanisms
The electron-reorganization along the concerted and stepwise pathways associated with the non-polar Diels-Alder reaction between cyclopentadiene (Cp, 1) and ethylene (2) has been studied using the topological analysis of the electron localization function (ELF) at the B3LYP/6-31G(d) level of theory. ELF results for the concerted mechanism stresses that the electron-reorganization demanded on the diene and ethylene reagents to reach two pseudo-diradical structures is responsible for the high activation energy. A comparative ELF analysis of some relevant points of the non-polar Diels-Alder reaction between Cp and styrene (10) suggests that these concerted mechanisms do not have a pericyclic e…
Understanding the [2n+2n] reaction mechanism between a carbenoid intermediate and CO2
ABSTRACTThe mechanism of the cycloaddition reaction of CO2 with a nucleophilic carbenoid intermediate has been theoretically studied by using the bonding evolution theory (BET) at the B3LYP/6-31G(d) level of theory. BET combines topological analysis of the electron localisation function and catastrophe theory along a reaction path. This cycloaddition reaction is characterised by 16 structural stability domains, associated to the following sequence of catastrophes: C8H9NO4 + CO2: 16-CF†CF†F†CFF†C†C†[FF†]F†FCC†-0: C9H9NO6. Formation of the two new C-C and C-O single bonds evolves after the transition state structure is reached. The high nucleophilic character and the electronic structure of c…
An Understanding of the Electrophilic/Nucleophilic Behavior of Electro-Deficient 2,3-Disubstituted 1,3-Butadienes in Polar Diels−Alder Reactions. A Density Functional Theory Study
The electrophilic/nucleophilic behavior of dimethyl 2,3-dimethylenesuccinate 1, an electron-deficient 2,3-disubstituted 1,3-butadiene, in polar Diels-Alder reactions has been studied using DFT methods at the B3LYP/6-31G(d) level of theory. The electronic nature of bonding of the transition structures involved in the cycloaddition reactions of the diene 1 toward the nucleophilically activated dienophile 6 and the strong electrophilically activated dienophile 7 has been carefully examined within the natural bond orbital (NBO) and the topological analysis of the electron localization function (ELF) frameworks. Additionally, a study of the global electrophilicity pattern of the reagents at the …
Aromaticity in Pericyclic Transition State Structures? A Critical Rationalisation Based on the Topological Analysis of Electron Density
The nature of the electron delocalisation pattern within a cyclic structure, i. e. the aromatic character, is examined for six-membered pseudocyclic transition state structures (TSs) involved in five representative examples of so-called pericyclic reactions. Results of the electron localisation function (ELF) and the quantum theory of atoms in molecules (QTAIM) analyses of the electron density evidence that in four of the cases, at least one pair of atoms are not bound at the TS configuration, thus precluding a possible cyclic conjugation. These findings make it possible to rule out the aromatic character of these TSs. High values of the synchronicity Sy index at the TSs contrast with the b…
A condensed-to-atom nucleophilicity index. An application to the director effects on the electrophilic aromatic substitutions
Abstract The local nucleophilicity of simple substituted aromatic systems is shown to be described on a quantitative basis by using a condensed-to-atoms nucleophilicity index. This quantity constitutes an extension of the global nucleophilicity descriptor, N introduced for reagents in cycloaddition reactions and other organic molecules [Journal of Organic Chemistry 73 (2008) 4615–4624; Journal of Molecular Structure (THEOCHEM) 865 (2008) 68–72]. The local projection N k is performed on the basis of the normalization condition of the Fukui functions. It is shown that such a simple index provides useful clues about the director effects of the substituents on the electrophilic aromatic substit…
Are one-step aromatic nucleophilic substitutions of non-activated benzenes concerted processes?
Aromatic nucleophilic substitution (SNAr) reactions of non-electrophilically activated benzenes have been studied within the Molecular Electron Density Theory (MEDT) at the B3LYP/6-311+G(d) computational level. These reactions, taking place through a one-step mechanism, present a high activation Gibbs free energy, ΔG≠ = 31.0 kcal mol-1, which decreases to 22.1 kcal mol-1 in the intramolecular process. A topological analysis of the electron localisation function along the reaction paths permits establishing the non-concerted nature of these SNAr reactions. A series of unstable structures, with similar electronic structures to those of Meisenheimer intermediates, are characterised. The presen…
A further exploration of a nucleophilicity index based on the gas-phase ionization potentials
An empirical nucleophilicity index based on the gas-phase ionization potentials has been recently shown to be useful categorizing and settling the nucleophilicity power of a series of captodative ethylenes reacting in cycloaddition reactions (L.R. Domingo, E. Chamorro, P. Perez, Journal of Organic Chemistry 73 (2008) 4615–4624). In the present work, the applicability of such model is tested within a broader series of substituted alkenes, substituted aromatic compounds and simple nucleophilic molecules. This index obtained within a Koopman’s theorem framework has been evaluated here in both gas and solution phases for several well-known nucleophiles. These results are found to be linearly co…
A Close Look to the Oxaphosphetane Formation along the Wittig Reaction: A [2+2] Cycloaddition?
The Wittig reaction between triphenylphosphine methylide and benzaldehyde has been studied both from conceptual and computational approaches. The supernucleophilic character of ylide accounts for the feasibility of the initial nucleophilic attack. The nature of bonding driving the formation of the first oxaphosphetane (OPA) intermediate in such a domino reaction is examined within a topological-based bonding evolution theory perspective. The sequence of the electronic flow associated to the changes in electron density supports a rationalization via two main electronic stages characterizing the single kinetic step: first, the C-C bond formation, which takes place via donation of electron den…
A computational and conceptual DFT study on the mechanism of hydrogen activation by novel frustrated Lewis pairs.
A computational and conceptual density functional theory (DFT) study on the mechanism of molecular hydrogen activation by a set of three frustrated Lewis pairs (FLPs) was performed at the ωB97X-D/6-311G(d,p) level of theory. A reduced model and other two prototypes derived from experimental data, based on the donor nitrogen and acceptor boron atoms, were used. Analysis based on the energy results, geometries and the global electron density transfer at the TSs made it possible to obtain some interesting conclusions: (i) despite the well-known very low reactivity of molecular hydrogen, the catalytic effectiveness of the three FLPs produces reactions with almost unappreciable activation energi…
An analysis of the regioselectivity of 1,3-dipolar cycloaddition reactions of benzonitrile n-oxides based on global and local electrophilicity and nucleophilicity indices
The regioselectivity of the 1,3-dipolar cycloaddition (13DC) reactions of benzonitrile N-oxides (BNOs) with electrophilic and nucleophilic alkenes has been analyzed by using global and local nucleophilicity and electrophilicity reactivity indices defined within the conceptual DFT. The BNOs react with electron-deficient and electron-rich ethylenes, but the regioselectivities of these polar reactions are different. Whereas the reactions with electron-rich ethylenes are completely regioselective, yielding 5-isoxazolines, a change in the regioselectivity is observed in the reactions with electron-deficient ethylenes, which yield a mixture of 4- and 5-isoxazolines. Analysis of the energies, geom…
Understanding the [2n+2n] reaction mechanism between a carbenoid intermediate and CO2
The mechanism of the cycloaddition reaction of CO2 with a nucleophilic carbenoid intermediate has been theoretically studied by using the bonding evolution theory (BET) at the B3LYP/6-31G(d) level of theory. BET combines topological analysis of the electron localisation function and catastrophe theory along a reaction path. This cycloaddition reaction is characterised by 16 structural stability domains, associated to the following sequence of catastrophes: C8H9NO4 + CO2: 16-CF†CF†F†CFF†C†C†[FF†]F†FCC†-0: C9H9NO6. Formation of the two new C-C and C-O single bonds evolves after the transition state structure is reached. The high nucleophilic character and the electronic structure of carbenoid…