0000000001312689
AUTHOR
Christopher J. Barrett
Supramolecular hierarchy among halogen and hydrogen bond donors in light-induced surface patterning
Halogen bonding, a noncovalent interaction possessing several unique features compared to the more familiar hydrogen bonding, is emerging as a powerful tool in functional materials design. Herein, we unambiguously show that one of these characteristic features, namely high directionality, renders halogen bonding the interaction of choice when developing azobenzene-containing supramolecular polymers for light-induced surface patterning. The study is conducted by using an extensive library of azobenzene molecules that differ only in terms of the bond-donor unit. We introduce a new tetrafluorophenol-containing azobenzene photoswitch capable of forming strong hydrogen bonds, and show that an io…
Assembly and dichroism of a four-component halogen-bonded metal-organic cocrystal salt solvate involving dicyanoaurate(I) acceptors
We describe the use of dicyanoaurate ions as linear ditopic metal–organic acceptors for the halogen bond-driven assembly of a dichroic metal–organic cocrystal based on azobenzene chromophores. Structural analysis by single crystal X-ray diffraction revealed that the material is a four-component solid, consisting of anticipated anionic metal–organic halogen-bonded chains based on dicyanoaurate ions, as well as complex potassium-based cations and discrete molecules of the crown ether 15-crown-5. Importantly, the structural analysis revealed the parallel alignment of the halogen-bonded chains required for dichroic behaviour, confirming that crystal engineering principles developed for the desi…
CCDC 1025655: Experimental Crystal Structure Determination
Related Article: Marco Saccone, Valentina Dichiarante, Alessandra Forni, Alexis Goulet-Hanssens, Gabriella Cavallo, Jaana Vapaavuori, Giancarlo Terraneo, Christopher J. Barrett, Giuseppe Resnati, Pierangelo Metrangolo, Arri Priimagi|2015|J.Mater.Chem.C|3|759|doi:10.1039/C4TC02315C
CCDC 1539033: Experimental Crystal Structure Determination
Related Article: Jan-Constantin Christopherson, Karlie P. Potts, Oleksandr S. Bushuyev, Filip Topić, Igor Huskić, Kari Rissanen, Christopher J. Barrett, Tomislav Friščić|2017|Faraday Discuss.|203|441|doi:10.1039/C7FD00114B
CCDC 1025656: Experimental Crystal Structure Determination
Related Article: Marco Saccone, Valentina Dichiarante, Alessandra Forni, Alexis Goulet-Hanssens, Gabriella Cavallo, Jaana Vapaavuori, Giancarlo Terraneo, Christopher J. Barrett, Giuseppe Resnati, Pierangelo Metrangolo, Arri Priimagi|2015|J.Mater.Chem.C|3|759|doi:10.1039/C4TC02315C