0000000001313394
AUTHOR
Jakub Fojt
Dipolar coupling of nanoparticle-molecule assemblies: An efficient approach for studying strong coupling
Strong light-matter interactions facilitate not only emerging applications in quantum and non-linear optics but also modifications of materials properties. In particular the latter possibility has spurred the development of advanced theoretical techniques that can accurately capture both quantum optical and quantum chemical degrees of freedom. These methods are, however, computationally very demanding, which limits their application range. Here, we demonstrate that the optical spectra of nanoparticle-molecule assemblies, including strong coupling effects, can be predicted with good accuracy using a subsystem approach, in which the response functions of the different units are coupled only a…
Humic Substances: From Supramolecular Aggregation to Fractal Conformation—Is There Time for a New Paradigm?
Natural organic matter, including humic substances (HS), comprises complex secondary structures with no defined covalent chemical bonds and stabilized by inter- and intra-molecular interactions, such as hydrogen bonding, Van der Waal’s forces, and pi-pi interactions. The latest view describes HS aggregates as a hydrogel-like structure comprised by a hydrophobic core of aromatic residues surrounded by polar and amphiphilic molecules akin a self-assembled soft material. A different view is based on the classification of this material as either mass or surface fractals. The former is intended as made by the clustering of macromolecules generating dendritic networks, while the latter have been …
Data and code for "Dipolar coupling of nanoparticle-molecule assemblies: An efficient approach for studying strong coupling"
The data includes the optical excitations of benzene, the optical spectra of coupled benzene-Al NP systems, and fits of the spectra to the coupled oscillator model. The optical spectra in question have been obtained in the dipolar coupling approximation and analyzed in the article "Dipolar coupling of nanoparticle-molecule assemblies: An efficient approach for studying strong coupling" by Jakub Fojt, Tuomas P. Rossi, Tomasz J. Antosiewicz, Mikael Kuisma and Paul Erhart. Scripts for processing of the data, which extract optical spectra from NWChem output files, and fit optical spectra to the coupled oscillator model, are also included. The scripts are written in Python and require …