0000000001314297
AUTHOR
A. Scholz
19F-MRT der Lungenventilation in Atemanhaltetechnik mittels SF6-Gas
Breathhold 19 F-Magnetic Resonance Imaging of Lung Ventilation using SF 6 Gas. Objective: Development of a method to analyze lung ventilation by 19 F-magnetic resonance imaging (MRI) of inspired SF 6 gas during breathhold. Material and Methods: Measurements were performed with a Siemens Magnetom Vision 1.5T scanner using the conventional gradient overdrive. Coronal images of the lung were acquired using ultrafast gradient-echo pulse sequences with TR/TE/α = 1.4 ms/ 0.48 ms/40° without slice selection. With NEX = 200 averages and MA = 32 × 64 raw data matrix, the acquisition time was 9s/image. Higher spatial resolution of 4.7 × 6.3 × 15 mm 3 was obtained with a three-dimensional pulse sequen…
Realization of administration unit for3He with gas recycling
Hyperpolarized (HP) noble gases (3He,129Xe) are used for MR-imaging of the lung. In the majority of case the HP gas is filled in Tedlarbags and directly inhaled by the patients. Starting from an earlier pilot device, an administration unit was built respectively to the Medical Devices Law to administer patients HP noble gas boli in defined quantities and at a predefined time during inspiration with high reproducibility and reliability without reducing MR-quality. The patient's airflows are monitored and recorded. It is possible to use gas admixtures, measure the polarization on-line and collect the exhaled gas for later recycling. The first images with healthy volunteers were taken with thi…
Magnetic Resonance Imaging and Computational Fluid Dynamics of High Frequency Oscillatory Ventilation (HFOV)
In order to better understand the mechanisms of gas transport during High Frequency Oscillatory Ventilation (HFOV) Magnetic Resonance Imaging (MRI) with contrast gases and numerical flow simulations based on Computational Fluid Dynamics(CFD) methods are performed.
Respiratory mechanics measured by forced oscillations during mechanical ventilation through a tracheal tube
The forced oscillation technique (FOT) allows the measurement of respiratory mechanics in the intensive care setting. The aim of this study was to compare the FOT with a reference method during mechanical ventilation through a tracheal tube. The respiratory impedance spectra were measured by FOT in nine anaesthetized pigs, and resistance and compliance were estimated on the basis of a linear resistance-compliance inertance model. In comparison, resistance and compliance were quantified by the multiple linear regression analysis (LSF) of conventional ventilator waveforms to the equation of motion. The resistance of the sample was found to range from 6 to 21 cmH(2)O s l(-1) and the compliance…
The enigmatic young brown dwarf binary FU Tau: accretion and activity
FU Tau belongs to a rare class of young, wide brown dwarf binaries. We have resolved the system in a Chandra X-ray observation and detected only the primary, FU Tau A. Hard X-ray emission, presumably from a corona, is present but, unexpectedly, we detect also a strong and unusually soft component from FU Tau A. Its X-ray properties, so far unique among brown dwarfs, are very similar to those of the T Tauri star TW Hya. The analogy with TW Hya suggests that the dominating soft X-ray component can be explained by emission from accretion shocks. However, the typical free-fall velocities of a brown dwarf are too low for an interpretation of the observed X-ray temperature as post-shock region. O…
Comparison of magnetic resonance imaging of inhaled SF6 with respiratory gas analysis
Magnetic resonance imaging of inhaled fluorinated inert gases ((19)F-MRI) such as sulfur hexafluoride (SF(6)) allows for analysis of ventilated air spaces. In this study, the possibility of using this technique to image lung function was assessed. For this, (19)F-MRI of inhaled SF(6) was compared with respiratory gas analysis, which is a global but reliable measure of alveolar gas fraction. Five anesthetized pigs underwent multiple-breath wash-in procedures with a gas mixture of 70% SF(6) and 30% oxygen. Two-dimensional (19)F-MRI and end-expiratory gas fraction analysis were performed after 4 to 24 inhaled breaths. Signal intensity of (19)F-MRI and end-expiratory SF(6) fraction were evaluat…
Temporal dynamics of lung aeration determined by dynamic CT in a porcine model of ARDS
We used dynamic CT to identify two different time constants of lung aeration and their individual contribution to the total increase in cross-sectional lung area in healthy and experimentally damaged lungs. In five healthy pigs, inflation and deflation between 0 and 50 cm H2O was imposed during dynamic (250 ms/image) CT acquisition, and repeated after experimental lung injury by saline lavage. The fractional areas of density ranges, which represent aerated lung parenchyma, were determined planimetrically, and their time for expansion during the manoeuvre was fitted using a bi-exponential model. Thus, two compartments, their sizes, i.e. their relative contributions to lung area aerated by th…
Application unit for the administration of contrast gases for pulmonary magnetic resonance imaging: optimization of ventilation distribution for3He-MRI
Purpose MRI of lung airspaces using gases with MR-active nuclei (3He, 129Xe, and 19F) is an important area of research in pulmonary imaging. The volume-controlled administration of gas mixtures is important for obtaining quantitative information from MR images. State-of-the-art gas administration using plastic bags (PBs) does not allow for a precise determination of both the volume and timing of a 3He bolus. Methods A novel application unit (AU) was built according to the requirements of the German medical devices law. Integrated spirometers enable the monitoring of the inhaled gas flow. The device is particularly suited for hyperpolarized (HP) gases (e.g., storage and administration with m…
High-frequency oscillatory ventilation in adults with traumatic brain injury and acute respiratory distress syndrome
This study observed adverse events of rescue treatment with high-frequency oscillatory ventilation (HFOV) in head-injured patients with acute respiratory distress syndrome (ARDS).Data of five male patients with ARDS and traumatic brain injury, median age 28 years, who failed to respond to conventional pressure-controlled ventilation (PCV) were analyzed retrospectively during HFOV. Adjusted mean airway pressure at initiation of HFOV was set to 5 cm H2O above the last measured mean airway pressure during PCV. Frequency of pulmonary air leak, mucus obstruction, tracheal injury, and need of HFOV termination due to increased intracranial pressure, decreased cerebral perfusion pressure, or deteri…
Laparoscopic sentinel lymph node mapping and excision of the rectum using a radioactive tracer — a prospective experimental study
Introduction: Patients with a low risk T1 rectal carcinoma can undergo the therapy of a local excision. In these patients the lymph node status remains unknown. There is a potential risk of up to 7% for nodal metastasis, in high risk cases it can rise up to 35%. To investigate the possibility of using the Sentinel lymph node (SLN) concept, which is anchored in the therapy of malignant melanoma and breast cancer, an experimental study on pigs was undertaken. The objective of the study was to laparoscopically identify and extract SLN’s from the rectum using a radioactive tracer (RT). Material und Methods: The experiment was conducted upon 30 pigs, because sample size calculation indicated tha…
Ventilation-Perfusion Ratio in Perflubron During Partial Liquid Ventilation
BACKGROUND: Functional magnetic resonance imaging (fMRI) of fluorine-19 allows for the mapping of oxygen partial pressure within perfluorocarbons in the alveolar space (Pao(2)). Theoretically, fMRI-detected Pao(2) can be combined with the Fick principle approach, i.e., a mass balance of oxygen uptake by ventilation and delivery by perfusion, to quantify the ventilation-perfusion ratio (Va/Q) of a lung region: The mixed venous blood and the inspiratory oxygen fraction, which are equal for all lung regions, are measured. In addition, the local expiratory oxygen fraction and the end capillary oxygen content, both of which may differ between the lung regions, are calculated using the fMRI-detec…
Brown Dwarfs in ChaI Dark Cloud
We present the results of a multiband survey for brown dwarfs in the Chamaeleon I dark cloud with the Wide Field Imager (WFI) camera at the ESO/MPG 2.2-m telescope on La Silla (Chile) on 28-May to 03-Jun 1999. The survey has revealed a substantial population of brown dwarfs in this southern star-forming region. Candidates were selected from R, I and H{alpha} imaging observations. We also observed in two medium-band filters, M855 and M915, for spectral type determination. The former filter covers a wavelength range containing spectral features characteristic of M-dwarfs, while the latter lies in a relatively featureless wavelength region for these late-type objects. A correlation was found b…
TW Hydrae association with X-shooter
Measurements of the protoplanetary disk frequency in young star clusters of different ages indicate disk lifetimes <10Myr. However, our current knowledge of how mass accretion in young stars evolves over the lifespans of disks is subject to many uncertainties, especially at the lower stellar masses. In this study, we investigate ongoing accretion activity in the TW Hydrae association (TWA), the closest association of pre-main sequence stars with active disks. The age (8-10Myr) and the proximity of the TWA render it an ideal target to probe the final stages of disk accretion down to brown dwarf masses. The study is based on homogeneous spectroscopic data from 300nm to 2500nm, obtained synopt…