0000000001314431
AUTHOR
Clemens Goegele
Biological characterization of Poly-L-lactic acid (PLLA)/Hydroxyapatite (HA)/Bioglass (BG) composite scaffolds made by Thermally Induced Phase Separation (TIPS) hosting human Mesenchymal Stem Cells
In the last few years, Tissue Engineering has focused on the favourable effects that composite scaffolds have on cell adhesion, growth and differentiation. In fact, composite scaffolds, usually composed of a synthetic polymer supplemented with naturally occurring components, display superior mechanical properties and bioconductivity than scaffolds consisting of a single component. Hydroxyapatite (HA) is the major inorganic component of bones. Bioglass (BG) is known to exert stimulatory effects on cells by ion release and hence, could be also advantageous for Bone Tissue Engineering. Poly-L-lactic acid (PLLA) is a versatile synthetic polymer combinable with HA and BG. The aim of this work wa…
Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplemented with bioactive glass 1393
Damage of hyaline cartilage such as nasoseptal cartilage requires proper reconstruction, which remains challenging due to its low intrinsic repair capacity. Implantation of autologous chondrocytes in combination with a biomimetic biomaterial represents a promising strategy to support cartilage repair. Despite so far mostly tested for bone tissue engineering, bioactive glass (BG) could exert stimulatory effects on chondrogenesis. The aim of this work was to produce and characterize composite porous poly(L-lactide) (PLLA)/1393BG scaffolds via thermally induced phase separation (TIPS) technique and assess their effects on chondrogenesis of nasoseptal chondrocytes. The PLLA scaffolds without or…