0000000001316299

AUTHOR

Tero Tuomivirta

showing 4 related works from this author

The role ofSphagnummosses in the methane cycling of a boreal mire

2010

Peatlands are a major natural source of atmospheric methane (CH4). Emissions from Sphagnum-dominated mires are lower than those measured from other mire types. This observation may partly be due to methanotrophic (i.e., methane-consuming) bacteria associated with Sphagnum. Twenty-three of the 41 Sphagnum species in Finland can be found in the peatland at Lakkasuo. To better understand the Sphagnum-methanotroph system, we tested the following hypotheses: (1) all these Sphagnum species support methanotrophic bacteria; (2) water level is the key environmental determinant for differences in methanotrophy across habitats; (3) under dry conditions, Sphagnum species will not host methanotrophic ba…

Peat010504 meteorology & atmospheric sciencesMethanotroph01 natural sciencesSphagnumSoilMireBotanySphagnopsidaBogEcosystemEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesgeographygeography.geographical_feature_categorybiologyArctic RegionsEcologyAtmospheric methane04 agricultural and veterinary sciences15. Life on landbiology.organism_classificationMossTransplantation13. Climate action040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceSchizosaccharomyces pombe ProteinsSeasonsMethaneOxidation-ReductionEcology
researchProduct

Methanotrophs are core members of the diazotroph community in decaying Norway spruce logs

2018

Dead wood is initially a nitrogen (N) poor substrate, where the N content increases with decay, partly due to biological N2 fixation, but the drivers of the N accumulation are poorly known. We quantified the rate of N2 fixation in decaying Norway spruce logs of different decay stages and studied the potential regulators of the N2-fixation activity. The average rate for acetylene reduction in the decaying wood was 7.5 nmol ethylene g−1d−1, which corresponds to 52.9 μg N kg−1d−1. The number of nifH copies (g−1 dry matter) was higher at the later decay stages, but no correlation between the copy number and the in vitro N2 fixation rate was found. All recovered nifH sequences were assigned to t…

0106 biological sciences0301 basic medicineta1172Soil Sciencechemistry.chemical_element010603 evolutionary biology01 natural sciencesMicrobiologyMethane03 medical and health scienceschemistry.chemical_compoundlahoaminenBotanyDry matterlahopuutritsobitdead woodnifHbiologyPicea abiesChemistryta1183coarse woody debrisPicea abiesbiology.organism_classificationNitrogenSubstrate (marine biology)kuusi030104 developmental biologytypensidontaasymbiotic nitrogen fixationNitrogen fixationDiazotrophCoarse woody debrisSoil Biology and Biochemistry
researchProduct

Exploring the mechanisms by which reindeer droppings induce fen peat methane production

2021

Abstract Peatlands, especially fens, are known to emit methane. Reindeer (Rangifer tarandus) use mires mainly as spring and summer pastures. In this work we observed that adding reindeer droppings to fen peat increased the potential methane production by 40%. This became apparent when droppings originating from reindeer kept in pen or pasture in winter were added to methanogenic fen peat samples. The droppings introduced Methanobacteriaceae (Methanobrevibacter; > 90% of the mcrA MiSeq reads) to the peat, which was originally populated by Methanosarcinaceae, Methanosaetaceae, Methanoregulaceae, Methanobacteriaceae, Methanomassiliicoccaceae, Methanocellaceae and Methanomicrobiaceae. The origi…

PeatporosekvensointiMethanobacteriaceaeSoil SciencemetaaniMicrobiologyPastureMethanebakteeritturveRumenchemistry.chemical_compoundulosteetGrazinglaiduntaminenmethanogensturvemaatMethanosaetaceaegeographygeography.geographical_feature_categorybiologysequencingDNA04 agricultural and veterinary sciencesmcrA15. Life on landbiology.organism_classificationMethanobrevibacterqPCRmikrobistoAgronomychemistry13. Climate actionpeat040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental sciencereindeerSoil Biology and Biochemistry
researchProduct

Appendix A. Potential methane oxidation rates detailed by Sphagnum species, habitat, water level, and methane concentration.

2016

Potential methane oxidation rates detailed by Sphagnum species, habitat, water level, and methane concentration.

researchProduct