0000000001316477
AUTHOR
Volodymyr Turkowski
Plasmon Excitations in Mixed Metallic Nanoarrays
Features of the surface plasmon from macroscopic materials emerge in molecular systems, but differentiating collective excitations from single-particle excitations in molecular systems remains elusive. The rich interactions between single-particle electron-hole and collective electron excitations produce phenomena related to the chemical physics aspects within the atomic array. We study the plasmonic properties of atomic arrays of noble (Au, Ag, and Cu) and transition-metal (Pd, Pt) homonuclear chains using time-dependent density functional theory and their Kohn-Sham transition contributions. The response to the electromagnetic radiation is related to both the geometry-dependent confinement…
Plasmon excitations in chemically heterogeneous nanoarrays
| openaire: EC/H2020/838996/EU//RealNanoPlasmon The capability of collective excitations, such as localized surface plasmon resonances, to produce a versatile spectrum of optical phenomena is governed by the interactions within the collective and single-particle responses in the finite system. In many practical instances, plasmonic metallic nanoparticles and arrays are either topologically or chemically heterogeneous, which affects both the constituent transitions and their interactions. Here, the formation of collective excitations in weakly Cu- and Pd-doped Au nanoarrays is described using time-dependent density functional theory. The additional impurity-induced modes in the optical respo…
Data for "Plasmon excitations in chemically heterogeneous nanoarrays"
The data includes atomic structures, photoabsorption spectra, and noninteracting spectra of the systems modeled in the article "Plasmon excitations in chemically heterogeneous nanoarrays" by Kevin Conley et al. See README.md in the archive for a detailed description.