0000000001319071

AUTHOR

Philippe Dubois

showing 6 related works from this author

Are control of extracellular acid-base balance and regulation of skeleton genes linked to resistance to ocean acidification in adult sea urchins?

2020

SCOPUS: ar.j

Settore BIO/07 - EcologiaCO2 ventsEnvironmental EngineeringClimate ChangeOceans and SeasMechanical propertiesAcid–base homeostasisEnvironnement et pollutionDICGene expressionExtracellularEnvironmental ChemistryAnimalsSeawaterWaste Management and DisposalGeneSkeletonCO2 ventAcid-Base EquilibriumResistance (ecology)ChemistryOcean acidificationOcean acidificationCarbon DioxideHydrogen-Ion ConcentrationbiomineralizationPollutionSkeleton (computer programming)adult sea urchinsCell biologyTechnologie de l'environnement contrôle de la pollutionqPCRSea UrchinsTraitement des déchetsGene expressionEchinodermsThe Science of the total environment
researchProduct

Possible effects of global environmental changes on Antarctic benthos: a synthesis across five major taxa

2012

Because of the unique conditions that exist around the Antarctic continent, Southern Ocean (SO) ecosystems are very susceptible to the growing impact of global climate change and other anthropogenic influences. Consequently, there is an urgent need to understand how SO marine life will cope with expected future changes in the environment. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity to environmental shifts, making it difficult to predict overall community or ecosystem responses. This emphasizes the need for an improved understanding of the Antarctic benthic ecosystem response to global climate change using a multi…

0106 biological sciencesEcologyEcology010604 marine biology & hydrobiologyGlobal warmingClimate changeMarine life15. Life on landBiology010603 evolutionary biology01 natural sciencesBenthos13. Climate actionBenthic zoneDominance (ecology)Ecosystem14. Life underwaterEcology Evolution Behavior and SystematicsNature and Landscape ConservationTrophic levelEcology and Evolution
researchProduct

The impact of ocean acidification and warming on the skeletal mechanical properties of the sea urchin Paracentrotus lividus from laboratory and field…

2015

AbstractIncreased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechin…

0106 biological sciencesSea urchinIntertidal zone010501 environmental sciencesTest (biology)Aquatic ScienceOceanography01 natural sciencesParacentrotus lividuschemistry.chemical_compoundbiology.animalAquatic scienceCO2 seepSea urchinEcology Evolution Behavior and SystematicsSkeleton0105 earth and related environmental sciencesbiologyEcology010604 marine biology & hydrobiologyLong-term exposureOcean acidificationOcean acidificationOcean acidification sea urchin Paracentrotus lividus mechanical properties nanoindentation skeleton CO2 vent intertidal pools long-term exposurebiology.organism_classificationEcology Evolution Behavior and SystematicOceanographychemistryCarbonateSeawaterIntertidal poolMechanical propertieParacentrotus lividu
researchProduct

Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?

2015

13 pages; International audience; Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid–base regulation capacities of the extracellular fluids. No infor…

acid-base regulationClimate Change[SDE.MCG]Environmental Sciences/Global ChangesAntarctic RegionsAmphipneustes lorioliocean acidificationAcid–base homeostasisbiology.animalsea urchinsAnimalsEnvironmental ChemistrySterechinus neumayeriSeawater14. Life underwaterSouthern OceanSea urchinGeneral Environmental ScienceAcid-Base EquilibriumGlobal and Planetary ChangeCarbon dioxide in Earth's atmosphere[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyEchinodermata [Echinoderms]EcologybiologyEcologyechinodermsOcean acidificationGlobal changebiology.organism_classificationacid–base regulation[ SDE.MCG ] Environmental Sciences/Global ChangesOceanography13. Climate actionAntarcticaSeawater[SDE.BE]Environmental Sciences/Biodiversity and Ecology
researchProduct

The impact of ocean acidification and warming on the skeletal mechanical properties of the sea urchin Paracentrotus lividus from laboratory and field…

2016

Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea …

Ocean Acidification International Coordination Centre (OA-ICC)IdentificationSalinityTemperateinorganicAlkalinityAreaExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateMesocosm or benthocosmAlkalinity totaltotalYoung s moduluspHNorth AtlanticTemperatureProportiondissolvedCarbonate ionLaboratory experimentPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Earth System ResearchField observationThicknessEchinodermataCalcite saturation stateLengthwaterYoung's modulusGrowth MorphologyBenthosReplicateDiameterHardnessOther studied parameter or processOcean Acidification International Coordination Centre OA ICCAnimaliaBicarbonate ionCalculated using seacarb after Nisumaa et al. (2010)ForceSpeciesHeightTest setCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideParacentrotus lividusGrowth/MorphologySingle speciesBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfSecond moment of area
researchProduct

Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?

2015

Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid-base regulation capacities of the extracellular fluids. No information on this is available to dat…

Ocean Acidification International Coordination Centre (OA-ICC)SalinityNotocidaris gaussensisBicarbonate ion standard deviationinorganicAlkalinity total standard deviationAlkalinityCoulometric titrationExperimentCarbon inorganic dissolvedTemperature waterSizeCoelomic fluidCalculated using seacarb after Nisumaa et al 2010CalculatedAragonite saturation stateCtenocidaris giganteaAlkalinity totaltotalAmphipneustes loriolipHTemperaturedissolvedAcid base regulationCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Carbon dioxide standard deviationSterechinus neumayeriEarth System ResearchAporocidaris eltanianaδ13Cstandard deviationField observationPolarStation labelEchinodermataPotentiometric titrationCalcite saturation stateCoelomic fluid alkalinityPotentiometricwaterPartial pressure of carbon dioxideAmphipneustes similisAragonite saturation state standard deviationBenthosDATE TIMEOcean Acidification International Coordination Centre OA ICCSterechinus antarcticusAnimaliaCalcite saturation state standard deviationBicarbonate ionLONGITUDECalculated using seacarb after Nisumaa et al. (2010)SpeciesCalculated using CO2SYScarbonEvent labelPartial pressure of carbon dioxide standard deviationCoelomic fluid carbon inorganic dissolvedCarbonate system computation flagAcid-base regulationpH standard deviationCarbonate ion standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)Amphipneustes rostratusPartial pressure of carbon dioxide water at sea surface temperature wet airDATE/TIMECarbon dioxideDifferenceSingle speciesCoelomic fluid pHLATITUDEFugacity of carbon dioxide water at sea surface temperature wet airAntarcticBenthic animalsCoast and continental shelfAbatus cavernosus
researchProduct