0000000001320565
AUTHOR
Andreas Wieser
Establishing Laboratory Cultures and Performing Ecological and Evolutionary Experiments with the Emerging Model Species Chironomus Riparius
Chironomus riparius is a well-established model organism in various fields such as ecotoxicology and ecology, and therefore environmental preferences, ecological interactions and metabolic traits are well-studied. With the recent publication of a high-quality draft genome, as well as different population genetic parameters such as mutation and recombination rate, the species can be used as an alternative to the Drosophila models in experimental population genomics or molecular ecology. To facilitate access to this promising experimental model species for a wider range of researchers, we describe experimental methods to first create and sustain long term cultures of C. riparius and then use …
Establishing laboratory cultures and performing ecological and evolutionary experiments with the emerging model speciesChironomus riparius
Chironomus riparius is a well‐established model organism in various fields such as ecotoxicology and ecology, and therefore, environmental preferences, ecological interactions and metabolic traits are well‐studied. With the recent publication of a high‐quality draft genome, as well as different population genetic parameters such as mutation and recombination rate, the species can be used as an alternative to the Drosophila models in experimental population genomics or molecular ecology. To facilitate access to this promising experimental model species for a wider range of researchers, we describe experimental methods to first create and sustain long‐term cultures of C. riparius and then use…
The genomic footprint of climate adaptation inChironomus riparius
The gradual heterogeneity of climatic factors produces continuously varying selection pressures across geographic distances that leave signatures of clinal variation in the genome. Separating signatures of clinal adaptation from signatures of other evolutionary forces, such as demographic processes, genetic drift, and adaptation to specific non-clinal conditions of the immediate local environment is a major challenge. Here, we examine climate adaptation in five natural populations of the non-biting midge Chironomus riparius sampled along a climatic gradient across Europe. Our study integrates experimental data, individual genome resequencing, Pool-Seq data, and population genetic modelling.…
Observations of Kinematics and Thermodynamic Structure Surrounding a Convective Storm Cluster over a Low Mountain Range
Abstract Measurements of a convective storm cluster in the northern Black Forest in southwest Germany have revealed the development of a warm and dry downdraft under its anvil cloud that had an inhibiting effect on the subsequent development of convection. These measurements were made on 12 July 2006 as part of the field campaign Prediction, Identification and Tracking of Convective Cells (PRINCE) during which a number of new measurement strategies were deployed. These included the collocation of a rotational Raman lidar and a Doppler lidar on the summit of the highest mountain in the region (1164 m MSL) as well as the deployment of teams carrying radiosondes to be released in the vicinity …
Establishing Laboratory Cultures and Performing Ecological and Evolutionary Experiments with the Emerging Model Species <em>Chironomus Riparius</em>
Chironomus riparius is a well-established model organism in various fields such as ecotoxicology and ecology, and therefore environmental preferences, ecological interactions and metabolic traits are well-studied. With the recent publication of a high-quality draft genome, as well as different population genetic parameters such as mutation and recombination rate, the species can be used as an alternative to the Drosophila models in experimental population genomics or molecular ecology. To facilitate access to this promising experimental model species for a wider range of researchers, we describe experimental methods to first create and sustain long term cultures of C. riparius and then use …
An experimental assessment of reproductive isolation and its consequences for seasonal hybridization dynamics
Regional Variation of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Enterobacterales, Fluoroquinolone-Resistant Salmonella enterica and Methicillin-Resistant Staphylococcus aureus Among Febrile Patients in Sub-Saharan Africa
Background: Antimicrobial resistance (AMR) thwarts the curative power of drugs and is a present-time global problem. We present data on antimicrobial susceptibility and resistance determinants of bacteria the WHO has highlighted as being key antimicrobial resistance concerns in Africa, to strengthen knowledge of AMR patterns in the region. Methods: Blood, stool, and urine specimens of febrile patients, aged between ≥ 30 days and ≤ 15 years and hospitalized in Burkina Faso, Gabon, Ghana, and Tanzania were cultured from November 2013 to March 2017 (Patients > 15 years were included in Tanzania). Antimicrobial susceptibility testing was performed for all Enterobacterales and Staphylococcus aur…
Rapid adaptation to high temperatures in Chironomus riparius
AbstractEffects of seasonal or daily temperature variation on fitness and physiology of ectothermic organisms and their ways to cope with such variations have been widely studied. However, the way multivoltines organisms cope with temperature variations from a generation to another is still not well understood and complex to identify. The aim of this study is to investigate whether the multivoltine midgeChironomus ripariusMeigen (1803) responds mainly via acclimation as predicted by current theories, or if rapid genetic adaptation is involved. To investigate this issue, a common garden approach has been applied. A mix of larvae from five European populations was raised in the laboratory at …
Data from: Rapid adaptation to high temperatures in Chironomus riparius
Effects of seasonal or daily temperature variation on fitness and physiology of ectothermic organisms and their ways to cope with such variations have been widely studied. However, the way multivoltines organisms cope with temperature variations from a generation to another is still not well understood and complex to identify. The aim of this study is to investigate whether the multivoltine midge Chironomus riparius Meigen (1803) responds mainly via acclimation as predicted by current theories, or if rapid genetic adaptation is involved. To investigate this issue, a common garden approach has been applied. A mix of larvae from five European populations was raised in the laboratory at three …